Tìm số nguyên x
A=\(\frac{2x+3}{x_{ }-7}\)
Trong mặt phẳng tọa độ $O x y$ cho Parabol $(P): y=x^{2}$ và đường thẳng $(d): y=m x+3$ ($m$ là tham số)
a) Tìm tọa độ giao điểm của $(d)$ và $(P)$ khi $m=2$.
b) Tìm $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt có hoành độ $x_{1} ; x_{2}$ thỏa mãn $\frac{1}{x_{1}}+\frac{1}{x_{2}}=\frac{3}{2}$.
a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)
Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)
Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)
b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)
Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)
Vậy \(m=-\frac{9}{2}\)
a)
b)
3)
4)
1) \(2x - \frac{3}{4}= \left ( + \frac{2}{3} \right )\)
\(2x = \frac{2}{3}+ \frac{3}{4}\)
\(2x = \frac{17}{12}\)
\(x = \frac{17}{12}: 2\)
x = \(\frac{17}{24}\)
Vậy ...........
2) x5 : x3 = \(\frac{1}{16}\)
\(x^{2}= \frac{1}{16}\)
=> \(x= \frac{1}{14}\) hoặc \(x= - \frac{1}{14}\)
Vậy ........
3) \(\left | x + \frac{1}{3} \right | - 2 = - 1\)
\(\left | x + \frac{1}{3} \right | = 1\)
* \(x + \frac{1}{3} = 1\)
\(x = 1 - \frac{1}{3}\)
\(x = \frac{2}{3}\)
* \(x + \frac{1}{3} = - 1\)
\(x =- 1 - \frac{1}{3}\)
\(x = - \frac{4}{3}\)
Vậy ...........hoặc..............
4) \(\frac{2}{9}x\left (x - 3\tfrac{7}{8} \right )= 0\)
\(\frac{2}{9}x\left (x - \frac{31}{8} \right )= 0\)
<=> \(\begin{bmatrix} \frac{2}{9}x = 0 & & \\ x - \frac{31}{8}= 0 & & \end{bmatrix}\)
\(\Leftrightarrow \begin{bmatrix} x = 0 & & \\ x = \frac{31}{8} & & \end{bmatrix}\)
pn bỏ dấu ngoặc bên phải nhé
Vậy ...............hoặc............
Chúc pn học tốt
( \(\frac{x+3}{x_{ }-3}+\frac{2x^2-6}{9-x^2}+\frac{X}{x+3}\)):\(\frac{6x-12}{2x^2-18}\)a)rút gọn
\(A=\dfrac{x^2+6x+9-2x^2+6+x^2-3x}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{2\left(x-3\right)\left(x+3\right)}{6\left(x-2\right)}\)
\(=\dfrac{3x+15}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{3\left(x-2\right)}=\dfrac{x+5}{x-2}\)
MÁY TÍNH CẦM TAY
1>Cho dãy số được xác định bởi \(x_1=1;x_2=2\)
\(x_n=nx_{n-1}-x_{n-2}-n\left(n\ge3\right)\)
Tính \(x_{12};x_{13};x_{14}\)
2> Cho biết \(\frac{210}{5689}=\frac{1}{x+\frac{1}{y+\frac{1}{z}}}\)với x, y, z là các số tự nhiên. Tính \(A=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
3> Tìm ước nguyên tố lớn nhất của \(8631844^2+4609606^2+10738729^2\)
1. Với D là biến đếm, ta có quy trình bấm phím liên tục:
D=D+1:A=DxB-C-D:C=B:B=A
CALC giá trị C=1; B=2; D=2 bấm "=" liên tục
Kết quả: x12 = 5245546; x13 = 67751587; x14 = 943276658
2. Dùng máy tính tính được x=27; y=11; z=19 => A=?
Hướng dẫn cụ thể cách bấm bài 2 được ko bạn
Bài 2 ta có \(x+\frac{1}{y+\frac{1}{z}}=\frac{5689}{210}\)
- B1: Tìm thương và số dư của 5689 cho 210
Tìm đc thương là 27 => x = 27 và dư 19
- B2: Tìm thương và dư của 210 cho 19
Tìm đc thương là 11 => y = 11 và dư 1
Đến khi thấy dư 1 thì dừng lại, số chia cũ là 19 chính là z = 19
a) Tìm số nguyên n để phân số M = \(\frac{2n-7}{n-5}\)có giá trị là số nguyên
b) Tìm x biết |x - 3| = 2x + 4
a) \(M=\frac{2n-7}{n-5}=\frac{2n-10}{n-5}+\frac{3}{n-5}=2+\frac{3}{n-5}\)
Để M là số nguyên thì \(\frac{3}{n-5}\) là số nguyên <=> 3 chia hết cho n-5
<=>n-5\(\in\)Ư(3)={-3;-1;1;3} <=> n\(\in\){2;4;6;8}
b)\(\left|x-3\right|=2x+4\Leftrightarrow\orbr{\begin{cases}x-3=-2x-4\\x-3=2x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=-1\\-x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=-7\end{cases}}\)
Bài 17: Tìm số nguyên n để các phân số sau có giá trị nguyên:
a)\(\frac{3}{x-1}\).b)\(\frac{4}{2x-1}\)c) \(\frac{3x+7}{x-7}\)
a) Để \(\frac{3}{x-1}\inℤ\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
b) Để \(\frac{4}{2x-1}\inℤ\Rightarrow\left(2x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
=> \(2x\in\left\{-3;-1;0;2;3;5\right\}\)
=> \(x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)
c) Ta có: \(\frac{3x+7}{x-7}=\frac{\left(3x-21\right)+28}{x-7}=2+\frac{28}{x-7}\)
Xong xét các TH như a,b nhé
thanks nhưng mai mik mới t.i.k đc bạn
Tìm x nguyên để các phân số sau là số nguyên
\(\frac{-3}{x-1};\frac{-4}{2x-1};\frac{3x+7}{x-1};\frac{4x-1}{3-x}\)
\(\frac{-3}{x-1}\)nguyên khi và chỉ khi -3 chia hết cho x - 1 hay x - 1 là ước của 3
\(\frac{-4}{2x-1}\)nguyên khi và chỉ khi -4 chia hết cho 2x - 1 hay 2x - 1 là ước của 4
Lấy 3x + 7 chia x - 1 => \(\frac{4}{x-1}\)nguyên khi và chỉ khi 4 chia hết cho x - 1 hay x - 1 là ước của 4
Mk chỉ làm đc vậy thui à!!!!!
Tìm x nguyên để các phân số sau là số nguyên
a)\(\frac{-3}{x-1}\)b)\(\frac{-4}{2x-1}\)c)\(\frac{3x+7}{x-1}\)d)\(\frac{4x-1}{3-x}\)
a) Tìm x biết:
l x - 3 l = 2x + 4
b) Tìm số nguyên n để phân số M = \(\frac{2n-7}{n-5}\) có giá trị là số nguyên