Giải phương trình ở mẫu
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
Giải các phương trình sau:
a)\(\frac{\left(9x-0.7\right)}{4}-\frac{\left(5x-1.5\right)}{7}=\frac{\left(7x-1.1\right)}{3}-\frac{5\left(0.4-2x\right)}{6}\)
b)\(\frac{3x-1}{x-1}-\frac{2x+5}{x+3}=1-\frac{4}{\left(x-1\right)\left(x+3\right)}\)
c)\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=-\frac{7}{6\left(x+5\right)}\)
d)\(\frac{8x^2}{3\left(1-4x\right)^2}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
Tìm điều kiện xác định rồi giải các phương trình sau:
a) \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)
b) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
c) \(\frac{8x^2}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
Help me!
a) ĐKXĐ: x khác +2
\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)
<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)
<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)
<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22
<=> x^2 - 7x - 2 = 2x - 22
<=> x^2 - 7x - 2 - 2x + 22 = 0
<=> x^2 - 9x + 20 = 0
<=> (x - 4)(x - 5) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
làm nốt đi
Giải các phương trình sau:
a) \(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\)
b) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
c) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)đkxđ \(x\ne\pm5\)
\(\Leftrightarrow45+9x-90-14x+70=0\)
\(\Leftrightarrow25-5x=0\)
\(\Leftrightarrow-5\left(x-5\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\left(\inđkxđ\right)\)
\(\Leftrightarrow x\in\varnothing\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{7}{6x+30}\)\(ĐKXĐ:x\ne5\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{2\left(25-x^2\right)}=\frac{7}{6x+30}\)
\(\frac{3}{4\left(x-5\right)}+\frac{5}{2\left(5^2-x^2\right)}=\frac{7}{6x+30}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{2\left(5+x\right)\left(5-x\right)}=\frac{7}{6\left(x+5\right)}\)
\(9\left(5+x\right)\left(5-x\right)+90\left(x-5\right)=14\left(x-5\right)\left(5-x\right)\)
\(-225+90x-9x^2=140x-14x^2-350\)
\(225-90x+9x^2+140x-14x^2-350=0\)
\(-125+50x-5x^2=0\)
\(-5\left(25-10x+x^2\right)=0\)
\(-5\left(5-x\right)^2=0\)
\(5-x=0\Leftrightarrow x=5\left(vl\right)\)vô nghiệm
- Giải các bất phương trình và các phương trình sau:
a. 1-\(\frac{2x-1}{9}\)= 3-\(\frac{3x-3}{12}\)
b. \(\frac{5x-2}{3}-\frac{2x^2-x}{2}>\frac{x\left(1-3x\right)}{3}+\frac{15x}{4}\)
c. \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)
\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)
\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)
\(\Leftrightarrow108-24x+12=324-27x+27\)
\(\Leftrightarrow3x=231\)
\(\Rightarrow x=77\)
c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)
\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)
\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)
\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)
\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
Giải phương trình :
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
Giải phương trình sau: \(\frac{3}{4\left(x-5\right)}+\frac{15}{2x^2-50}-\frac{7}{6\left(x+5\right)}=0\)
Giải phương trình :
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
ĐKXĐ : \(x\ne-5;5\)
\(<=>\frac{3}{4\left(x-5\right)}-\frac{15}{2x^2-50}=-\frac{7}{6\left(x+5\right)}\)
\(<=>\frac{3}{4\left(x-5\right)}-\frac{15}{2\left(x^2-25\right)}=-\frac{7}{6\left(x+5\right)}\)
\(<=>\frac{3}{4\left(x-5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}=-\frac{7}{6\left(x+5\right)}\)
\(<=>\frac{3.3.\left(x+5\right)}{4.3\left(x-5\right)\left(x+5\right)}-\frac{15.6}{2.6\left(x+5\right)\left(x-5\right)}=\frac{-7.2\left(x-5\right)}{6.2\left(x+5\right)\left(x-5\right)}\)
\(<=>9x+45-90=-14x+70\)
\(<=>9x+ 14x=70-45+90\)
\(<=>23x=115\)
\(<=>x=5\) (không thỏa mãn điều kiện xác định )
vậy phương trình vô nghiệm
giải phương trình
a)\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
b)\(\frac{1}{x}-\frac{x+2}{x-2}=\frac{2}{2x-x}\)
nhanh giùm mình ạ
\(ĐKXĐ:x\ne\pm5\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\Rightarrow\frac{3\left(x+5\right)}{4\left(x-5\right)\left(x+5\right)}+\frac{30}{4\left(25-x^2\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x+15}{4\left(x-5\right)\left(x+5\right)}+\frac{-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x+15-30}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3x-15}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3\left(x-5\right)}{4\left(x-5\right)\left(x+5\right)}=\frac{-7\left(x-5\right)}{6\left(x+5\right)\left(x-5\right)}\)
\(\Rightarrow\frac{3}{4\left(x+5\right)}=\frac{-7}{6\left(x+5\right)}\)
\(\Rightarrow18\left(x+5\right)=-28\left(x+5\right)\)
\(\Rightarrow18\left(x+5\right)+28\left(x+5\right)=0\)
\(\Rightarrow46\left(x+5\right)=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\)(ktm)
Vậy pt vô nghiệm