tính chất dãy tỉ số bằng nhau: 2x=3y=5z và x+2y+z=41
\(\frac{x}{4}\)=\(\frac{y}{3}\)và 3y=5z và x-y-z=100.Tìm x,y,z(áp dụng tính chất dãy tỉ số bằng nhau)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)
Ta có :
\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\)(1)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}\)(2)
Từ (1) và (2) ; Suy ra : \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ; ta được :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{100}{-4}=-25\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{20}=-25\\\frac{y}{15}=-25\\\frac{z}{9}=-25\end{cases}\Rightarrow\hept{\begin{cases}x=-500\\y=-375\\z=-225\end{cases}}}\)
Vậy .................
Tìm x,y(Áp dụng tính chất của dãy tỉ số bằng nhau và một số tính chất khác)
\(4x=3y;7y=5z\)và \(x+y+z=-46\)
Tiếc quá. Mik làm đc. Nhg mik chx = điện thọi nên k vt đc p/ số
Tìm x, y, z theo cách áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2x}{3}\)=\(\frac{3y}{4}\)=\(\frac{4z}{5}\)
và x - 2y + 3z = 62
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x-2y+3z}{18-2.16+3.15}=\frac{62}{31}=2\)
=> x = 2.18 = 36
y = 2.16 = 32
z = 2.15 = 30
Vậy ...
Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
=> \(\frac{x}{\frac{3}{2}}=\frac{2y}{\frac{8}{3}}=\frac{3z}{\frac{15}{4}}=\frac{x-2y+3z}{\frac{3}{2}-\frac{8}{3}+\frac{15}{4}}=\frac{62}{\frac{31}{12}}=24\)
=> \(\hept{\begin{cases}\frac{2x}{3}=24\\\frac{3y}{4}=24\\\frac{4z}{5}=24\end{cases}}\Leftrightarrow\hept{\begin{cases}x=36\\y=32\\z=30\end{cases}}\)
tìm các số hữu tỉ x, y, z biết
a) 2x = 3y = 7z và x + y - z = 58
b) 2x = 3y = 5z và x + y - z = -190
c) 3x 2y, 7y = 5z và x - y + z = 32
a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58
APa dụng TC dãy TSBN ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\Rightarrow x=42;y=28;z=12\)
Các câu còn lại tương tự
Tìm x,y(Áp dụng tính chất của dãy tỉ số bằng nhau và một số tính chất khác)
\(\frac{x-1}{2}=\frac{y-z}{3}=\frac{z-3}{4}\)và \(2x+3y-z=50\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và 2x+3y-z = -14
Giúp mình với!!!!
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=-1\)
\(\Rightarrow\frac{2x}{6}=-1\Rightarrow2x=-6\Rightarrow x=-3\)
\(\Rightarrow\frac{3y}{15}=-1\Rightarrow3y=-15\Rightarrow y=-5\)
\(\Rightarrow\frac{z}{7}=-1\Rightarrow z=-7\)
theo đề ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = -14
=> \(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng t/c DTSBN ta có:
\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=\frac{-14}{14}\) = \(-1\)
=> \(\frac{x}{3}=-1=>x=-3\)
\(\frac{y}{5}=-1=>y=-5\)
\(\frac{z}{7}=-1=>z=-7\)
t i c k nha!! 4354565475677687978873535752456465465765786876897978
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{3+5-7}=-\frac{14}{1}=-14\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=-14\Rightarrow\left(-14\right)\cdot3=-42\\\frac{y}{5}=-14\Rightarrow\left(-14\right)\cdot5=-70\\\frac{z}{7}=-14\Rightarrow\left(-14\right)\cdot7=-98\end{cases}}\)
Vậy \(x=-42\); \(y=-70\); \(z=-98\)
Tìm x,y(Áp dụng tính chất của dãy tỉ số bằng nhau và một số tính chất khác)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và \(x+y+z=49\)
Dựa theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y+4z}{3+4+5}=\frac{2x+3y+4z}{12}\)
Rút gọn đi, ta có:
\(\frac{2x+3y+4z}{12}=\frac{x+3y+4z}{6}=\frac{x+y+4z}{2}=\frac{x+y+z}{\left(\frac{2}{4}\right)}=\frac{48}{\left(\frac{2}{4}\right)}=96\) (1)
Từ (1), ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=96\Rightarrow\hept{\begin{cases}2x=96.3\\3y=96.4\\4z=96.5\end{cases}}\Rightarrow\hept{\begin{cases}x=144\\y=128\\z=120\end{cases}}\)
Kết luận: .....
Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)
\(\Rightarrow x=\frac{3}{2}k;y=\frac{4}{3}k;z=\frac{5}{4}k\)
Có: \(x+y+z=49\)
\(\Rightarrow\frac{3}{2}k+\frac{4}{3}k+\frac{5}{4}k=49\)
\(k.\left(\frac{3}{2}+\frac{4}{3}+\frac{5}{4}\right)=49\)
\(k.\frac{49}{12}=49\)
\(\Rightarrow k=12\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.12=18\\y=\frac{4}{3}.12=16\\z=\frac{5}{4}.12=15\end{cases}}\)
Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Tham khảo nhé~
cho các số dương x,y,z tỉ lệ với 3,4,5. Tính giá trị của biểu thức
\(P=\frac{x+2y+3x}{2x+3y+4z}+\frac{2x+3y+4z}{3x+4y+5z}+\frac{3x+4y+5z}{4x+5y+6z}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
(Áp dụng t/c của dãy tỉ số bằng nhau)
1/2x=3y=4z và x-y-z=35
2/\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\):\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)và 2x+3y-z=186
1)
Ta có:
\(2x=3y=4z\Leftrightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x-y-z}{\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}}=-420\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-420.\dfrac{1}{2}=-210\\y=-420.\dfrac{1}{3}=-140\\z=-420.\dfrac{1}{4}=-105\end{matrix}\right.\)
Vậy....
1: Ta có: 2x=3y=4z
nên \(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}\)
mà x-y-z=35
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x-y-z}{\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}}=\dfrac{35}{-\dfrac{1}{12}}=-420\)
Do đó: x=-210; y=-140; z=-105
2: Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}\)
nên \(\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)
Ta có: \(\dfrac{y}{5}=\dfrac{z}{7}\)
nên \(\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
hay \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
Do đó: x=45; y=60; z=84