tim so nguyen n de
a)n - 2 chia het cho n + 1
b) 2n + 7 chia het cho n + 2
tim so nguyen n de
n - 2 chia het cho n + 1
2n + 7 chia het cho n + 2
+)n - 2 chia hết cho n + 1
=>n - 2 \(⋮\)n + 1
=>n + 1 - 3 \(⋮\) n + 1
Mà n + 1 \(⋮\) n + 1 nên 3 \(⋮\) n + 1
=> n + 1\(\in\)Ư(3) = {-1;1;-3;3}
=>n + 1\(\in\) {-1;1;-3;3}
=> n \(\in\){-2;0;-4;2}
Vậy n \(\in\){-2;0;-4;2}
+)2n + 7 chia hết cho n + 2
=>2n + 7 \(⋮\)n +2
=>2n + 4 +3 \(⋮\)n +2
=>2(n + 2)+ 3 \(⋮\)n + 2
Mà 2(n + 2) \(⋮\)n + 2 nên 3 \(⋮\)n + 2
=> n + 1\(\in\)Ư(3) = {-1;1;-3;3}
n + 2\(\in\) {-1;1;-3;3}
=> n \(\in\){-3;-1;-5;1}
Vậy n \(\in\){-3;-1;-5;1}
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
TIM N LA SO NGUYEN SAO CHO
a , 3n +11 chia het cho n
b , 2n - 7 chia het cho n+ 2
c , n2 + 2n + 10 chia het cho n+ 1
a) 3n+11 chi hết cho n
mà 3n cũng chia hết cho n
=> 3n+11- 3n chia hết cho n
=> 11 chia hết cho n
=> n thuộc ước 11=> n thuộc { 1; -1; 11;-11}
Tim so nguyen n de n-3 chia het cho 7
Tim so nguyen n de (n+3): (n-1)
2n-1 chia het (n+2)
a/ Để n - 3 chia hết cho 7 thì n - 3 = 7k => n = 7k + 3 (Với k thuộc N*)
n=10
=>10-3 chia hết cho 10
tíc mình nha
tim so nguyen n biet
3n - 2 chia het cho 2n - 1
n + 3 chia het cho n - 4
Tim tat ca cac so nguyen n de: \(2n^2+n-7\) chia het cho n-2
tim so nguyen n de 5+n^2-2n chia het cho n-2
tim so nguyen n biet (n-7) chia het cho (2n+1)
Lời giải:
$n-7\vdots 2n+1$
$\Rightarrow 2(n-7)\vdots 2n+1$
$\Rightarrow 2n+1-15\vdots 2n+1$
$\Rightarrow 15\vdots 2n+1$
$\Rightarrow 2n+1\in \left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2; 2; -3; 7; -8\right\}$
tim so nguyen x
.3n-1chia het n
n-4 chia het n-13n
2n+1 chia het n-2
2n-5chia het n+1
n2 +3n+7chia het n+3
n2+3 chia het n-1