Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Thị Hương Chi
Xem chi tiết
Midori
Xem chi tiết
Đông Phương Lạc
22 tháng 8 2019 lúc 10:19

Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!

C/m:

Từ giả thiết ta có:

\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\)                 \(\left(.\right)\)

\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)

\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)

Giả sử \(MA\ne MB\)ta xét 2 trường hợp:

T/ hợp 1\(MA< MB\)

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)

Nguyễn Linh Chi
22 tháng 8 2019 lúc 11:03

Nối MA.

Để chứng minh MA =MB. Ta dùng phản chứng.

G/s: \(MA\ne MB\)

Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)

Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)

Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)

+) TH1: MA> MB=MC

Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)

Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)

+) TH1: MA< MB=MC

Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)

Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)

=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)

=> Điều giả sử là sai

=> MA=MB

Đông Phương Lạc
22 tháng 8 2019 lúc 16:15

Làm tiếp nè:

Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A_2}\)( quan hệ góc - cạnh đối diện )

Vì \(MC=MB\)nên \(MA< MC\)

Do đó: \(\widehat{C_2}< \widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))

Suy ra: \(\widehat{B}_2+\widehat{C_2}< \widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0< \widehat{BAC}\): trái với \(\left(.\right)\)

T/hợp 2: \(MA>MB\)

Xét \(\Delta MAB,\)vì \(MA>MB\)nên \(\widehat{B_2}>\widehat{A_2}\)( quan hệ góc - cạnh đối diện )

Vì \(MC=MB\)nên \(MA>MC\)

Dó đó: \(\widehat{C_2}>\widehat{A_1}\) ( quan hệ góc - cạnh đối diện trong \(\Delta MAC\))

Suy ra: \(\widehat{B}_2+\widehat{C_2}>\widehat{A_1}+\widehat{A_2}\)hay \(30^0+15^0=45^0>\widehat{BAC}\): trái với \(\left(.\right)\)

Vậy điều giả sử \(MA\ne MB\)là sai, hay \(MA=MB\)

Bài làm của mk hay của Cô Linh Chi đều đc nha !

Hóp Hiền
Xem chi tiết
Trần Khánh Huyền
Xem chi tiết
Trần Khánh Huyền
19 tháng 1 2022 lúc 22:02

các bạn trả lời thì vẽ luôn hình nka

 

VŨ PHƯƠNG ANH
Xem chi tiết
tran quoc toan
10 tháng 2 2019 lúc 19:10

mình ko bít

Trần Khánh Huyền
Xem chi tiết
Tống Thị Phương
Xem chi tiết
Nguyễn Minh Đăng
11 tháng 5 2020 lúc 13:21

Đề bài của bạn sai rồi, góc B phải bằng 45 độ!

A B C H 45

Ta có: vì \(AH\perp BC\)và \(AH=\frac{1}{2}BC\)

=> Tam giác AHC vuông cân tại H

=> \(\widehat{C}=45^0\)

Vì Tam giác ABC có \(\widehat{B}=\widehat{C}=45^0\)

=> Tam giác ABC cân tại A

=> ĐPCM

Học tốt!!!!

Khách vãng lai đã xóa
jfjjjfopodfpsa
Xem chi tiết
Nguyễn Tiến Dũng
3 tháng 4 2018 lúc 8:18

a)Tam giác ABC có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\widehat{A}+75^o+60^o=180^o\)

\(\widehat{A}=180^o-60^o-75^o=45^o\)

Hoàng Phú Huy
3 tháng 4 2018 lúc 8:44

a)Tam giác ABC có:

a+b +c = 180 ​o + 75 o + 60 o = 180 o

= 180 o − 60 o − 75 o = 45

Gia Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 12 2021 lúc 13:16

Bài 1: 

ΔABC=ΔDKH

Nam
Xem chi tiết
✎﹏ϯǜทɠ✯廴ěë︵☆
14 tháng 3 2022 lúc 21:58

B 60 độ

Sơn Mai Thanh Hoàng
14 tháng 3 2022 lúc 21:58

B

Hồ_Maii
14 tháng 3 2022 lúc 21:59

B