Có hay không hai số hửu tỉ a và b thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
1. Có tồn tại hay không hai số dương thỏa mãn:
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
2. Cho hai số hữu tỉ a và b thỏa mãn: a - b = 2( a + b ) =.\(\frac{a}{b}\) Chứng minh a = - 3b.
3. Cho hai số hữu tỉ a và b thỏa a + b = ab = \(\frac{a}{b}\)
1/Chứng minh \(\frac{a}{b}\) = a - 1
2/Chứng minh b = -1
3/Tìm a
Có tồn tại hay không các số a;b;c thỏa mãn:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\) và a+b+c = abc
Cho a, b, c, d, e là các số hữu tỉ ( khác 0). Các số hửu tỉ d và e phải thỏa mãn điểu kiện gì để từ tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\) có thể suy ra tỉ lệ thức \(\frac{a}{b}\)= \(\frac{a+c}{b+c}\)
Các bn lm ơn lm nhanh hộ tui dc ko? Tui đag cần rất gấp đó các bn ơi!
1/hỏi có hay không 16 số tự nhiên, mỗi số có 3 chữ số được tạo thành từ ba chữ số a,b,c thỏa mãn hai số bất kỳ trong chúng không có cùng số dư khi chia cho 16?
2/cho a,b,c là các số thực dương thỏa mãn abc=1.chứng minh: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(a+1\right)\left(c+1\right)}\ge\frac{3}{4}\)
HELP ME !
Có hay ko các số a,b,c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)và a+b+c=abc
Ta có: a + b + c = abc
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Ta lại có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-\frac{3}{4}\)(vô lý)
Vậy không tồn tại a,b,c thỏa mãn bài toán
a) Tìm hai số dương a, b thỏa mãn:
\(\frac{1}{a}\)- \(\frac{1}{b}=\frac{1}{a-b}\)
b) Tìm các số hữu tỉ x,y,z thỏa mãn điều kiện:
\(x+y=\frac{-7}{6};y+z=\frac{1}{4}\)Và \(x+z=\frac{1}{12}\)
a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)
(=) \(\left(b-a\right).\left(a-b\right)=ab\)
Vì a,b là 2 số dương
=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\)
Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b, Cộng vế với vế của 3 đẳng thức ta có :
\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)
(=) \(x+y+z=\frac{-5}{12}\)
Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)
Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)
Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)
Ta có: \(\hept{\begin{cases}x+y=-\frac{7}{6}\\y+z=\frac{1}{4}\\z+x=\frac{1}{12}\end{cases}}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
\(2.\left(x+y+z\right)=-\frac{5}{6}\)
\(\Rightarrow x+y+z=-\frac{5}{12}\)
\(\Rightarrow-\frac{7}{6}+z=-\frac{5}{12}\)
\(z=-\frac{5}{12}+\frac{7}{6}\)
\(z=-\frac{5}{12}+\frac{14}{12}\)
\(z=\frac{9}{12}\)
\(z=\frac{3}{4}\)
\(\Rightarrow x+\frac{3}{4}=\frac{1}{12}\)
\(x=\frac{1}{12}-\frac{3}{4}\)
\(x=-\frac{2}{3}\)
\(\Rightarrow-\frac{2}{3}+y=-\frac{7}{6}\)
\(y=-\frac{7}{6}+\frac{2}{3}\)
\(y=-\frac{1}{2}\)
Vậy \(\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{1}{2}\\z=\frac{3}{4}\end{cases}}\)
Tham khảo nhé~
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cmr nếu các số hữu tỉ a,b,c thỏa mãn abc=1 và \(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\)=\(\frac{b^3}{a}+\frac{a^3}{c}+\frac{c^3}{b}\)thì 1 trong 3 số a,b,c là lập phương của 1 số hữu tỉ
để chứng minh 1 trong 3 số a,b,c là lập phương của 1 số hữu tỉ ta sẽ chứng minh \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\) có ít nhất 1 số hữu tỉ
đặt \(\hept{\begin{cases}x=\frac{a}{b^3}\\y=\frac{b}{c^3}\\z=\frac{c}{a^3}\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{x}=\frac{b^3}{a}\\\frac{1}{y}=\frac{c^3}{b}\\\frac{1}{z}=\frac{a^3}{b}\end{cases}}}\)
do abc=1 => xyz=1 (1)
từ đề bài => \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow x+y+z=xy+yz+xz\left(xyz\ge1\right)\left(2\right)\)
Từ (1)(2) => \(xyz+\left(x+y+z\right)-\left(xy+yz+zx\right)-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
vậy \( {\displaystyle \displaystyle \sum }x=1 \) chẳng hạn, => \(a=b^3\)
\(\Rightarrow\sqrt[3]{a}=b\)mà b là số hữu tỉ
Vậy trong 3 số \(\sqrt[3]{a};\sqrt[3]{b};\sqrt[3]{c}\)có ít nhất 1 số hữu tỉ (đpcm)
Cho 4 số nguyên dương a,b,c,d thỏa mãn \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)\) và b là TBC của a và c.
CMR: Từ 4 số a,b,c,d có thể lập thành tỉ lệ thức.
Ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)
\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)
Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)
Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)
=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)
=> (a + c).2d = c.(a + c + 2d)
=> 2ad + 2cd = ac + c2 + 2cd
=> 2ad = ac + c2 = c.(a + c) = c.2b
=> ad = bc
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)