Tìm x,y,z thỏa mãn:
(x-y)^2014+|x|+|y|=2
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
tìm x,y ,a thỏa mãn /x-6/+/x-10/+/x-2022/+/y-2014/+/z-2015/=2016
xạo vừa vừa thôi mấy mắm ơi, chtt đâu có đâu
cho x,y,z là các số dương thỏa mãn x2014+y2014+z2014=3
tìm mã của x4+y4+z4
\(2x^{2014}+1005\ge1007\sqrt[1007]{x^{4028}}=1007x^4\)
\(\Leftrightarrow x^{2014}\ge\frac{1007x^4-1005}{2}\)
\(\Rightarrow3\ge\frac{1007\left(x^4+y^4+z^4\right)-3.1005}{2}\)
\(\Rightarrow x^4+y^4+z^4\le3\)
CHO 3 SỐ x,y,z THỎA MÃN x / 2013 = y / 2014 = z / 2015 . TÍNH GIÁ TRỊ CỦA BIỂU THỨC T = (x-z)^2 / (x-y)^2(y-z)
Nếu \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}\Rightarrow x=y=z=0\)
Vậy \(T=\frac{\left(x-z\right)^2}{\left(x-y\right)^2.\left(y-z\right)}=\frac{0^2}{0^2.0}\) mà phân số được viết dưới dạng \(\frac{a}{b}\) với a thuộc Z và b khác 0
\(\Rightarrow\)T không có giá trị thỏa mãn
Tìm x,y nguyên dương thỏa mãn:
\(2019\left(x-y\sqrt{2014}\right)-2018\left(y-z\sqrt{2014}\right)\)
và \(x^2+y^2+z^2\)
là số nguyên tố
Tìm các số nguyên x,y,z thỏa mãn:
\(\left(x-y\right)^{2014}+\left|x\right|+\left|y\right|=2\)
Tìm các số nguyên dương x,y,z thỏa mãn đồng thời 2 đk sau:
\(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\) là số hữu tỉ và x2+y2+z2 là số nguyên tố.
tìm x,y ,a thỏa mãn /x-6/+/x-10/+/x-2022/+/y-2014/+/z-2015/=2016
Tìm \(x,y,z\in Z+\) thỏa mãn 2 điều kiện sau: \(\frac{x-y\sqrt{2014}}{y-z\sqrt{2014}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố