Cho đường tròn (O) đường kính AB, M là một điểm tùy ý trên đường kính AB. Qua M kẻ một cát tuyến cắt đường tròn ở C và D sao cho góc DMB = 45 độ. Chứng minh rằng MC^2 + MD^2 không phụ thuộc vào vị trí của điểm M trên AB.
Đáp án:98
Giải thích các bước giải:
mc^2
cho nửa đường tròn tâm O có đường kính AB. từ một điểm m nằm trên nửa đường tròn bất kì. Vẽ tiếp tuyến xy kẻ AD; BC cùng vuông góc với xy tại D và C
CMR : MC = MD ; Tông AD+BC có giá trị không phụ thuộc vào vị trí điểm m trên nửa đường tròn; đường tròn đường kính AD tiếp sức với AB
a: ΔOCD cân tại O
mà OH là đường cao
nên OH là phân giác của góc COD
Xét ΔOCM và ΔODM có
OC=OD
góc COM=góc DOM
OM chung
Do đo: ΔOCM=ΔODM
=>góc ODM=90 độ
=>DM là tiếptuyến của (O)
b: Xét ΔMCF và ΔMEC có
góc MCF=góc MEC
góc CMF chung
Do đó: ΔMCF đồng dạng với ΔMEC
=>MC/ME=MF/MC
=>MC^2=ME*MF=MH*MO
Cho đường tròn (O) bán kính R và đường thằng (d) không đi qua O , cắt đường tròn (O lại 2 điểm E,F . Lấy điểm M bất kì trên tia đối Fe, qua M kẻ 2 tiếp tuyến MC,MD với đường tròn ( C,D) là các tiếp điểm 1. chứng minh tứ giác MCOD nội tiếp trong một đường tròn
2. gọi K là trung điểm EF . chứng minh KM là phân giác góc CKD
3. đường thẳng đi qua O và vuông góc với MO cắt các tia MC,MD theo thứ tự tại R,T . tìm vị trí của điểm M trên (d) sao cho diện tích tam giác MRT nhỏ nhất
Cho đường tròn tâm O, đường kính AB. Từ một điểm M trên nửa đường tròn , vẽ tiếp tuyến xy. Kẻ AD và BC cùng vuông góc vơi xy .
a) Chứng minh rằng : MC=MD
b) Chứng minh tổng AD+BC có giá trị không phụ thuộc vị trí điểm M trên nữa đường tròn tâm O
c) Chứng minh rằng : Đường tròn đường kính CD tiếp xúc với AB .
d) Xác định vị trí M để tứ giác ABCD có diện diện tích lớn nhất
bn tựu vẽ hk nha
a, dễ cm tứ giác ABCD là hình thang
ta có AD//MO//CB(cùng vuông góc vs DC)
A0=B0
từ đây suy ra DM=MC
B, TỪ M KẺ MH VUÔNG GÓC VS AB
TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)
LẠI CÓ GÓC AMO=GÓC MAO( do MO=AO) (2)
TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO
LẠI CÓ GÓC D=GÓC MHA=90
SUY RA TAM GIAC DMA=TAM GIAC HMA
SUY RA AD=AH
tự BC=HB
TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI
C, TA CÓ MH=DM=MC(CMT)
LẠI CÓ MHVUOONG GÓC VS AB
SUY RA DƯỜNG TRÒN CD TX VS AB
D, TRONG HT VUÔNG ABCD CÓ DC<=AB
SUY RA SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)
DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB
Cho nửa đường tròn (O) đường kính AB, điểm M thuộc nửa đường tròn, điểm C thuộc bán kính OA.Trên nửa mặt phẳng bờ AB chứa điểm M,kẻ 2 tiếp tuyến Ax, By của nửa đường tròn (O), đường thẳng qua M và vuông góc với MC cắt Ax,By thứ tự tại P và Q
1,CMR ACMP nội tiếp và \(\widehat{PCQ=}\)90
2, Gọi E à giao điểm của AM và CP, F là giao điểm của BM và CQ. CMR EF//AB
3, Xác định vị trí của C trên OA sao cho AB=2EF
cho nửa đường tròn (O;R) đường kính AB. Lấy M thuộc nửa đường tròn đó sao cho AM<BM. Qua M kẻ d là đường tiếp tuyến của (O). Gọi C và D là hình chiếu của A và B trên d kẻ MH vuông góc AB
a) CMR A,C,M,H cùng thuộc 1 đường tròn
b) MB^2= BHxBA và BM là tiếp tuyến của đường tròn đg kính AM
c) CMR: H thuộc đg tròn đường kính CD
d) giả sử AM = R và d cắt AB ở K. tiếp tuyến với (O) tại A cắt d ở E. CMR
Cho đường tròn tâm O, đường kính AB . M cố định trên tiếp tuyến tại A của đường tròn (O) vẽ tiếp tuyến MC và cát tuyến MHK ( Nằm giữa 2 tia MB và MO ) .Đường thẳng BH , BK cắt đường thẳng MO tại E,F . Qua A kẻ đt // với MK cắt đường tròn tại I . CI cắt MK tại N
a, Tứ giác MCHE nội tiếp
b, Chứng minh tổng MN2 + ON2 không phụ thuộc vào vị trí của cát tuyến MHK
c, Chứng minh OE = OF
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất
Bài 4:
a:
Xét (O) có
ΔCED nội tiếp
CD là đường kính
=>ΔCED vuông tại E
ΔOEF cân tại O
mà OI là đường cao
nên I là trung điểm của EF
Xét tứ giác CEMF có
I là trung điểm chung của CM và EF
CM vuông góc EF
=>CEMF là hình thoi
=>CE//MF
=<MF vuông góc ED(1)
Xét (O') có
ΔMPD nội tiêp
MD là đường kính
=>ΔMPD vuông tại P
=>MP vuông góc ED(2)
Từ (1), (2) suy ra F,M,P thẳng hàng
b: góc IPO'=góc IPM+góc O'PM
=góc IEM+góc O'MP
=góc IEM+góc FMI=90 độ
=>IP là tiếp tuyến của (O')