Bài 1 tìm số tự nhiên x. a, x chia hết cho 20;35 và x<500. b, x chia hết cho 4;6 và 0<x<50
Bài 1:
a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250<a<350
b, tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50<x<80
c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0<x<300 }
d, tìm số tự nhiên a lớn nhất, biết 240 chia hết cho a, 700 chia hết cho a
e, 144 chia hết cho x, 192 chia hết cho x và x>20
f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và 15<a<30
g, tìm số tự nhiên a, biết 30 chia hết cho a và 45 chia hết cho a
Bài 3: Tìm số tự nhiên x, biết:
126 chia hết cho x, 210 chia hết cho x, biết 15<x<30
Bài 4: Tìm số tự nhiên a lớn nhất thoả mãn:
a) 320 chia hết cho a và 480 chia hết cho a, b) 360 chia hết cho a và 600 chia hết cho a
Bài 5: Tìm số tự nhiên a lớn hơn 25, biết rằng các số 525; 875 và 280 đều chia hết cho a
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
Bài 5
525 ⋮ a; 875 ⋮ a; 280 ⋮ a
⇒ a ∈ ƯC(525; 875; 280)
Ta có:
525 = 3.5².7
875 = 5³.7
280 = 2³.5.7
⇒ ƯCLN(525; 875; 280) = 5.7 = 35
⇒ x ∈ ƯC(525; 875; 280) = Ư(35) = {1; 5; 7; 35}
Mà x > 25
⇒ x = 35
1. Tìm các số tự nhiên x, biết :
a. 20 chia hết cho x-5
b. 18 chia hết cho x+1
c. 75 chia hết cho 2x+1
d. 78 chia hết cho 2x
2. Tìm các số tự nhiên x,y biết :
a. (x-4)(y+1)=8
b. (2x+1)(2y-1)=15
Trả lời giúp mình với mai mình nộp bài rồi, mình tick cho
Giúp mình đi rồi mình like cho ♥♥
Bài 2 : Tìm số tự nhiên x biết rằng 72 chia hết cho x , 48 chia hết cho x , x nhỏ hơn 10
Bài 3 : Tìm số tự nhiên x biết rằng 7 chia hết cho ( 2x - 1)
Bài 4 : Tổng sau có chia hết cho 4 hay không ?
A = \(3+3^2+3^3+...+3^{19}+3^{20}\)
Bài 1: Cho M = 48+20+a với a là số tự nhiên
Tìm a để M chia hết cho 4, không chia hết cho 4
Bài 2: Tích A =1.2.3.4.5....20 có chia hết cho 400 không
Bài 3:
a, Tìm số tự nhiên n để n+10 chia hết cho n+1
b, Tìm số tự nhiên n để3n +40 chia hết cho n+2
Hông biết kho và nhiều thế
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
BÀI 1.tìm bcnn của:
60 và 280
84 và 108
7 và 15
144;156;252
24;120;240.
Bài 2
66;110 và 154
42;63 và 105
Bài 3
a) tìm số tự nhiên x ,biết rằng 112 chia hết cho x,140 chia hết cho x và 10<x<20
b) tìm số tự nhiên x lớn nhất ,biết rằng 420 chia hết cho x và 700 chia hết cho x
280 chia hết cho x ; 700 chia hết cho x ; 420 chia hết cho x và 40 < x < 100
=> x ∈ ƯC( 280 ; 700 ; 420 ) và 40 < x < 100
280 = 23 . 5 . 7
700 = 22 . 52 . 7
420 = 22 . 3 . 5 . 7
=> ƯCLN( 280 ; 700 ; 420 ) = 22 . 5 . 7 = 140
=> ƯC( 280 ; 700 ; 420 ) = Ư(140) = { 1 ; 2 ; 4 ; 5 ; 7 ; 10 ; 14 ; 20 ; 28 ; 35 ; 70 ; 140 }
mà 40 < x < 100
=> x = 70
280 chia hết cho x ; 700 chia hết cho x ; 420 chia hết cho x và 40 < x < 100
=> x ∈ ƯC( 280 ; 700 ; 420 ) và 40 < x < 100
280 = 23 . 5 . 7
700 = 22 . 52 . 7
420 = 22 . 3 . 5 . 7
=> ƯCLN( 280 ; 700 ; 420 ) = 22 . 5 . 7 = 140
=> ƯC( 280 ; 700 ; 420 ) = Ư(140) = { 1 ; 2 ; 4 ; 5 ; 7 ; 10 ; 14 ; 20 ; 28 ; 35 ; 70 ; 140 }
mà 40 < x < 100
=> x = 70
bài 1.Tìm số tự nhiên x biết rằng: x + 15 chia hết cho x + 2.
bài 2. Cho C= 1 + 3 + 32 + 33 +... + 311.Chứng minh rằng: a/ A chia hết 13 b/ A chia hết cho 40
bài 3. Chứng tỏ rằng: a/ 109 + 2 chia hết cho 3 b/ 1010 _- 1 chia hết cho 9; c/6100 - 1 chia hết cho 5 ; d/ 2120 - 1110 chia hết cho 2 và 5.
bài 4. Tìm số tự nhiên n biết 288 chia n dư 38 và 414 chia n dư 14.
bài 5. Tìm số tự nhiên a lớn nhất thỏa mãn 543; 3567 đều chia cho a dư 3,
bài 6. Tìm số tự nhiên nhỏ nhất chia 3 dư 1, chia 5 dư 3, chia cho 7 dư 5.
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
a chia cho 4, 5, 6 dư 1
nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n
=> a = 60n+1
với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7
=> a = 7m
Vậy 7m = 60n + 1 có 1 chia 7 dư 1
=> 60n chia 7 dư 6 mà 60 chia 7 dư 4
=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6
=> n = 5 a = 60.5 + 1 = 301
Bài 1: Tìm số phần tử trong mỗi tập hợp sau
H = { 21;23;25;...;215 }
K = { 135;144;153;...;351 }
B = { x thuộc N / x - 8 = 12 }
D = { x thuộc N / 13 < x < 14 }
F = { x thuộc P / x có 2 chữ số }
M = { 57;60;63;...;423}
Bài 2:
a, a chia hết cho 24, a chia hết cho 36, a chia hết cho 18 và 250< a < 350
b, Tìm số tự nhiên x, biết x chia hết cho 9, x chia hết cho 12 và 50 < x < 80
c, A = { x thuộc N / x chia hết cho 12, x chia hết cho 15, x chia hết cho 18 và 0 < x < 300 }
d, tìm số tự nhiên a lớn nhất, biết 420 chia hết cho a, 700 chia hết cho a
e, 144 chia hết cho x, 192 chia hết cho x và x > 20
f, tìm số tự nhiên a, biết 126 chia hết cho a, 210 chia hết cho a và 15<a<30
g, Tìm số tự nhiên a, biết 30 chia hết cho a và 45 chia hết cho a
Tập hợp H có số phần tử là :
( 215 - 21 ) : 2 + 1 = 98
Vậy tập hợp H có 98 phần tử
Bài 1 : Cho a thuộc N*. Chứng minh rằng ( 4^a +1 ) . (4^a +2) chia hết cho 3
Bài 2 : Tìm các số tự nhiên x , biết 4^x +11 = 6y
Bài 3: Cho biết a và 5a có tổng các chữ số bằng nhau . Chứng minh rằng a chia hết cho 9
Bài 4 : Tìm tất cả các số tự nhiên x , y sao cho x+1 chia hết cho y và y+1 chia hết cho x
Bài 1:
a, tìm số tự nhiên x, biết 108 chia hết cho x, 180 chia hết cho x và x>15
b, x chia hết cho 6, x chia hết cho 15 và 60 < x < 300
c, a nhỏ nhất khác 0, biết a chia hết cho 36, a chia hết cho 30 và a chia hết cho 20
c, Ta có : a chia hết cho 36 , a chia hết cho 30 , a chia hết cho 20 => a thuộc BC(36,30,20)
Mà 36 = 2^2.3^2 30 = 2.3.5 20 = 2^2.5
=> BCNN(36,30,20) = 2^2.3^2.5 = 180
=> BC(36,30,20) = B(180) = { 0,180,360,.....}
Vì a nhỏ nhất khác 0 => a = 180
a, Giải
Ta có : 108 chia hết cho x, 180 chia hết cho x => x thuộc ƯC(180,108)
Mà 180 = 2^2.3^2.5 108 = 2^2.3^3
=> ƯCLN(108,180) = 2^2.3^2 = 36
=> ƯC(108,180) = Ư(36) = { 1,2,3,4,6,9,12, 18, 36 }
Vì x>15 => x thuộc { 18,36 }
k mk nha
b, Ta có : x chia hết cho 6, x chia hết cho 15 => x thuộc BC(6,15)
Mà 6 = 2.3 15 = 3.5
=> BCNN(6,15) = 2.3.5 = 30
=> BC(6,15) = B(30) = { 0,30,60,90,.............}
Vì 60 < x < 300 => x thuộc { 90,120,150,........ 270}