Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB
lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD. Chứng minh đường thẳng EF đi qua trung điểm của AB và DC
http://olm.vn/hoi-dap/question/403903.html
http://olm.vn/hoi-dap/tag/Toan-lop-8.html
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB
lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.
Mik chỉ cần ý b thôi nhoa
Ý (b) câu hỏi là gì vậy?
Ý b câu hỏi là : Chứng minh EF đi qua trung điểm của AB và CD
Câu (b) không cần dùng M, N, P, Q cho nên mình bỏ chúng đi để đỡ rối mắt.
Gọi X là giao điểm của EF và AB, Y là giao điểm của EF và CD.
- Xét \(\Delta EDY\) có: AX // DY => \(\frac{AX}{DY}=\frac{EX}{EY}\) (hệ quả định lí Ta-lét)
- Xét \(\Delta ECY\) có: BX // CY => \(\frac{BX}{CY}=\frac{EX}{EY}\) (hệ quả định lí Ta-lét)
Từ đó suy ra \(\frac{AX}{DY}=\frac{BX}{CY}\) (1)
- Xét \(\Delta FDY\) có: BX // DY => \(\frac{BX}{DY}=\frac{FX}{FY}\) (hệ quả định lí Ta-lét)
- Xét \(\Delta FCY\) có: AX // CY => \(\frac{AX}{CY}=\frac{FX}{FY}\) (hệ quả định lí Ta-lét)
Từ đó suy ra \(\frac{AX}{CY}=\frac{BX}{DY}\) (2)
Từ (1) và (2) \(\Rightarrow AX=BX,CY=DY\) (vì \(AX,BX,CY,DY>0\))
=> X là trung điểm của AB (đ/n), Y là trung điểm của CD (đ/n)
=> EF đi qua trung điểm của AB và CD (\(X,Y\in EF\)) (đpcm)
cho hình thang ABCD ( AB // CD ). một đường thẳng song song với AB lần lượt cắt các đoạn AD, BD, AC, BC tại M, N, P, Q
a) chứng minh rằng MN = PQ
b) gọi E là giao AD và BC , F là giao của AC và BD . CMR đường thẳng EF đi qua trung điểm AB và DC
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB
lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.
Chứng minh đường thẳng EF đi qua trung điểm của AB và DC.
Chỉ cần ý b thôi nha. Tks
Gọi I là trung điểm của AB.
Giả sử đường thẳng IE cắt CD tại K1
Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD
Giả sử đường thẳng IF cắt CD tại K2
Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)
mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD
do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau
Vậy ta có đpcm
Bạn ơi gọi luôn I là trung điểm AB thì sai r
Thực ra bài này cũng có nhiều cách mà em, cách kia cũng không phải là ngộ nhận
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB lần lượt cắt các đoạn AD, BC, AC, BC tại M, N, P, Q.
a) CMR: MN = PQ
b) gọi E là giao điểm AD và BC, F là giao điểm AC và BD. CM EF đi qua trung điểm của AB và DC
Cho hình thang ABCD ( AB//CD), Gọi M,N lần lượt là trung điểm của AB<CD, O là giao điểm của AC và BD; I là giao điểm của AD,BC
a) chứng minh O,I,M,N thẳng hàng
b) Qua O kẻ đường thẳng song song với AB cắt AD,BC lần lượt tại E,F. Chứng minh OE=OF
alodgdhgjkhukljhkljyutfruftyhf
Cho hình thang ABCD (AB//CD) có CD = 2AB. Gọi O là giao điểm của hai đường chéo AC và BD, F là giao điểm cạnh bên AD và BC
a) Chứng minh OC = 2OA
b) Điểm O là điểm đặc biệt gì trong tam giác FCD
c) Một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, I, K, N. Chứng minh DM/AD=CN/BC
a) ABCD là hình thang nên AB//CD
CD=2AB ==>AB/CD=1/2
AB//CD, áp dụng định lý Ta-let, ta có
OA/OC=OB/OD=AB/CD=1/2
=>OA/OC=1/2 => OC=2OA
B) Ta có : OA/OC=OB/OD=AB/CD=1/2
==> OD/OB = 2 ==>OD = 2OB
*xét: OC/AC = 2OA/(OA + OC) = 2OA/(OA + 2OA) = 2OA/3OA = 2/3(1);
OD/BD = 2OB/(OD + OB) = 2OB/(2OB + OB) = 2/3(2)
*từ (1),(2) =>OC/AC = OD/BD = 2/3
=>O là trọng tâm tam giác FCD
c)
Vì một đường thẳng song song với AB và CD lần lượt cắt các đoạn thẳng AD, BD,AC và BC tại M, I,K và N nên KN//AB ,IM//AB và IN//AB
MI//AB, áp dụng hệ quả của định lý Ta-let, ta có
MI/AB = DM/AD = DI/IB (1)
IN//AB, áp dụng định lý Ta-let, ta có
CN/BC=DI/IB (2)
Từ (1) và (2), ta có
DM/AD=CN/BC
d)
KN//AB, áp dụng hệ quả của định lý Ta-let, ta có
KN/AB=CN/BC
Ta có :KN/AB=CN/BC và MI/AB=DM/AD
mà DM/AD=CN/BC nên KN/AB=MI/AB => KN=MI
Cho hình thang ABCD (AB // CD). Một đường thẳng song song với AB
lần lượt cắt các đoạn thẳng AD, BD, AC, BC tại M, N, P, Q.
a/ Chứng minh MN = PQ.
b/ Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.
Chứng minh đường thẳng EF đi qua trung điểm của AB và DC.
Chỉ cần ý b thôi nha
Cho hình thang ABCD có hai đáy AB và CD. Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF song song với AB.
b) Đường thẳng EF cắt AD, BC lần lượt tại H và N. Chứng minh: HE = EF = FN.