Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Yến
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
4 tháng 3 2021 lúc 15:43

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

Chu Nhật Thành
Xem chi tiết
Yen Nhi
3 tháng 2 2023 lúc 22:14

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

Chu Nhật Thành
3 tháng 2 2023 lúc 19:54

Các bạn giải nhanh cho mình nhé. Thanks!

Đỗ Thị Yến
Xem chi tiết
gãi hộ cái đít
4 tháng 3 2021 lúc 17:33

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

 

 

#Tiểu_Tỷ_Tỷ⁀ᶜᵘᵗᵉ
Xem chi tiết
Dương KAV
13 tháng 10 2018 lúc 22:34

a) Giả sử abcdeg chia hết cho 37                     —> 999abc+(abc+deg) chia hết cho 37

—> 999abc chia hết cho 37  vì 999 :37 ko dư                                                     —>abc + deg  chia hết cho 37

Đỗ Thị Yến
Xem chi tiết
{Yêu toán học}_best**(...
4 tháng 3 2021 lúc 18:35

\(abcd=101.ab=101.cd=abab=cdcd\)

Trong toán học, không thể xảy ra trường hợp

 \(abcd⋮101\) mà \(ab\ne cd\) vì một số có 2 chữ số nhân với 101 thì kết quả sẽ là số đó viết 2 lần liền nhau

\(\Rightarrow ab-cd=cd-ab=0\left(đpcm\right)\)

 

Đỗ Thị Yến
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
4 tháng 3 2021 lúc 15:33

Điều cần chưng minh là sai

Ví dụ: \(\overline{abcd}=7920⋮99\) nhưng \(79-20⋮̸99\) 

Nguyễn Đức Trường
Xem chi tiết
Nguyễn Hải Long
20 tháng 12 2017 lúc 20:13

b, 1028+8 chia hết cho 9

1028+8=(1027*10)+8=10009+8 chia hết cho 8

(8,9)=1 nên 1028+8 chia hết cho 27

0o0^^^Nhi^^^0o0
Xem chi tiết
 Mashiro Shiina
1 tháng 8 2017 lúc 22:23

Ta có:

\(\overline{abcabc}=1001\overline{abc}\)

\(=143.7.\overline{abc}\)

\(\Rightarrow1001\overline{abc}⋮7\Rightarrow\overline{abcabc}⋮7\)

\(\rightarrowđpcm\)

\(\overline{aaa}=111a\)

\(=37.3.a\)

\(\Rightarrow111a⋮37\Rightarrow\overline{aaa}⋮37\)

\(\rightarrowđpcm\)

\(\overline{1ab1}-\overline{1ba1}\)

\(=1000+\overline{ab}+1-1000-\overline{ba}-1\)

\(=\overline{ab}-\overline{ba}\)

\(=10a+b-10b-a\)

\(=9a-9b\)

\(=9\left(a-b\right)⋮9\)

\(\overline{1ab1}-\overline{1ba1}=\overline{...0}⋮10\)

\(\Rightarrow\overline{1ab1}-\overline{1ba1}⋮9;10\Rightarrow⋮90\)

\(\rightarrowđpcm\)

Chu Phương Uyên
1 tháng 8 2017 lúc 22:43

b, ta có \(\overline{aaa}\)=111.a=37.3.a \(⋮\)37

=> aaa chia hết 37 (đpcm)

minamoto mimiko
Xem chi tiết
TBQT
9 tháng 7 2018 lúc 10:02

Ta có : \(\overline{abcd}=10\overline{ab}+\overline{cd}=100.2.\overline{cd}+\overline{cd}\)

                    \(=201.\overline{cd}\)

Mà      \(201⋮67\)nên \(201.\overline{cd}⋮67\)

Vậy \(\overline{abcd}⋮67\)

Shinichi Kudo
9 tháng 7 2018 lúc 21:14

Ta có: abcd = ab x 100 + cd =200cd +cd (vì ab = 2cd)

hay=201cd

Mà \(201⋮67\left(=3\right)\)

\(\Rightarrow201\overline{cd}⋮67\)

Vậy \(\overline{ab}=2\overline{cd}\Leftrightarrow\overline{abcd}⋮67\)