chứng tỏ rằng 3n/3n+1 ( n thuộc N)là phân số tối giản
Chứng tỏ rằng 3n/3n+1 (n thuộc N) là phân số tối giản
Gọi d là ƯCLN (3n;3n+1) ( d thuộc N*)
=> 3a+1-3a chia hết chi d
=> 1 chia hết cho d
mà d thuộc N* => d=1
=> \(\frac{3n}{3n+1}\)là phân số tối giản
3n và 3n +1 là 2 số TN liên tiếp nên ƯCLN(3n, 3n+1)=1------>3n/3n+1 là phân số tối giản
Chứng tỏ rằng 3n/3n+1 (n thuộc N) là phân số tối giản
Ta có 3n; 3n + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow\) 3n; 3n + 1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
chứng tỏ rằng:3n/3n+1(n thuộc Z)là phân số tối giản
3n và 3n+1 là 2 số nguyên liên tiếp nên phân số 3n/3n+1 là ps tối giản
chứng tỏ rằng 3n/3n+1 ( n thuộc N) là phân số tối giản
GỌI ƯCLN(3n;3n+1)=d
=>3n chia hết cho d; 3n+1chia hết cho d
=>3n+1-3n=1chia hết cho d=> d=1
=> 3n/3n+1 là phân số tối giản
Gọi ƯCLN 3n;3n+1 là d
=> 3n chia hết cho d;3n+1 chia hết cho d
=> 1chia hết cho d=> d=1
=> 3n và 3n+1 là ntố cùng nhau
=> phân số tối giản
Chứng tỏ rằng 3n + 1/ 3n + 4 là phân số tối giản với n thuộc N.
Giúp mik với các bạn ơi!
Gọi \(ƯCLN\left(3n+1;3n+4\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n+1⋮d\\3n+4⋮d\end{cases}}\)
\(\Rightarrow\)\(\left(3n+1\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow\)\(\left(-3\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-3\right)=\left\{1;-1;3;-3\right\}\)
Lại có :
\(3n⋮3\)\(;\)\(3n⋮\left(-3\right)\)
\(\Rightarrow\)\(3n+1\) không chia hết cho \(3\) và \(-3\)
\(\Rightarrow\)\(ƯCLN\left(3n+1;3n+4\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n+1}{3n+4}\) là phân số tối giản với mọi \(n\inℕ\)
Chúc bạn học tốt ~
chứng tỏ rằng 2n+5/3n+7 là phân số tối giản?(n thuộc N*)
Gọi d = (2n+5;3n+7) (d thuộc N)
=> (2n+5) chia hết cho d và (3n +7) chia hết cho d
=> 3.(2n + 5) - 2.(3n + 7) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(2n + 5 ; 3n + 7) = 1
=> Phân số 2n+5/3n+7 tối giản với mọi n thuộc N
ko chắc, bn tham khảo
Học tốt
goi d la uoc nguyen to cua 2n+5 va 3n+7
Suy ra 2n+5 va 3n+7 chia het cho d
Suy ra 3(2n+5) va 2(3n+7) chia het cho d
Suy ra 6n+15 va 6n+14 chia het cho d
Suy ra 6n+15-6n+14 chia het cho d
Suy ra 1 chia het cho d
Suy ra d thuoc Ư(1)=1
Suy ra 2n+5/3n+7 la phan so toi gian
Gọi d = ƯCLN ( 2n + 5 ; 3n + 7 )
Ta có :
2n + 5 \(⋮\)d ; 3n + 7 \(⋮\)d
=> 3 ( 2n + 5 ) \(⋮\)d ; 2 ( 3n+ 7 ) \(⋮\)d
=> 6n + 15 \(⋮\); 6n + 14 \(⋮\)d
=> ( 6n + 15 ) - ( 6n + 14 ) \(⋮\)d
=> 1 \(⋮\)d
=> d = { 1 ; - 1 }
=> \(\frac{2n+5}{3n+7}\)là phân số tối giản
Chứng tỏ rằng 3n/3n+1 là tối giản với n thuộc N
Ta có 3n và 3n+1 nguyên tố cùng nhau (vì 3n và 3n+1 là hai số tự nhiên liên tiếp)
=> 3n và 3n+1 chỉ cùng chia hết cho 1
=>\(\frac{3n}{3n+1}\)là phân số tối giản.
Cho n thuộc N . Chứng tỏ rằng phân số 3n+5/8n + 13 là phân số tối giản
Gọi ƯCLN(3n+5,8n+13) là d (d\(\in\)Z*)
\(\Rightarrow\hept{\begin{cases}3n+5\\8n+13\end{cases}}\)\(⋮\)d \(\Rightarrow\hept{\begin{cases}13\left(3n+5\right)\\5\left(8n+13\right)\end{cases}}\)\(⋮\)d
\(\Rightarrow\hept{\begin{cases}39n+65\\40n+65\end{cases}}\)\(⋮\)d
\(\Rightarrow\)-1\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d=1
\(\Rightarrow\)đpcm
chứng tỏ rằng 3n+2 phần 5n+3 là phân số tối giản [với n thuộc n]
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N