Giải phương trình:
\({x +2{} \over x-3} \) +\({x -4{} \over (x+4)2}\) =\( {3x^2 \ {} \over x^2+x-12}\)
Giải phương trình sau: \({(x+10)(x+4)\over 12}-{(x+4)(2-x)\over 4}={(x+10)(x-2)\over 3}\)
Giải các phương trình sau :
a, \({8 \over x-8} + { 11\over x-11} = {9 \over x-9} +{10 \over x-10}\)
b, \({x \over x-3} - {x \over x-5} = { x \over x-4} - { x\over x-6}\)
c, \({ 4\over x^2 - 3x + 2 } - { 3 \over 2x^2 - 6x +1 } +1 =0\)
d, \({1\over x-1} + {2\over x-2} + {3 \over x-3} = {6 \over x-6}\)
e, \({2\over 2x+1} - {3 \over 2x-1} = {4\over 4x^2 -1}\)
f, \({ 2x\over x +1 } + { 18 \over x^2 +2x-3} = {2x-5 \over x+3}\)
g, \({1 \over x-1} + { 2x^2 -5 \over x^3 -1 } = { 4 \over x^2 +x+1}\)
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
GIẢI PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
1. 3(x+2) = 5x+8
2. 2(x-1) = 3(3+x)+3
3. 5-(x-6) = 4(3-2x)
4. \({2x + 3\over 3} + {2x-1\over 6} = 4- {x \over 3}\)
6. \({10x + 3\over 12} =1 + {6 + 8x\over 9}\)
1) 3(x + 2) = 5x + 8
<=> 3x + 6 = 5x + 8
<=> 3x + 6 - 5x - 8 = 0
<=> -2x - 2 = 0
<=> -2x = 0 + 2
<=> -2x = 2
<=> x = -1
2) 2(x - 1) = 3(3 + x) + 3
<=> 2x - 2 = 9 + x + 3
<=> 2x - 2 = 12 + x
<=> 2x - 2 - 12 - x = 0
<=> x - 14 = 0
<=> x = 0 + 14
<=> x = 14
3) 5 - (x - 6) = 4(3 - 2x)
<=> 5 - x + 6 = 12 - 8x
<=> 11 - x = 12 - 8x
<=> 11 - x - 12 + 8x = 0
<=> -1 + 7x = 0
<=> 7x = 0 + 1
<=> 7x = 1
<=> x = 1/7
Giải các phương trình sau
a) 3x+6=8x+3
b) \({x+2 \over 5}\)+\({x+7 \over 3}\)=\({2x+8 \over 15}\)
c) \({x+1 \over x-1}\)-\({x+2 \over x-2}\)=1/x2 - 3x +2
\(\text{a) }3x+6=8x+3\)
\(\Leftrightarrow3x-8x=3-6\)
\(\Leftrightarrow-5x=-3\)
\(\Leftrightarrow x=\frac{-3}{-5}=\frac{3}{5}\)
\(\text{Câu b và câu c bạn ghi rõ lại giùm}\)
b) x+2/5 + x+7/3 = 2x+8/15
giúp mình với nhé
Câu b) trên là 8 1/5 chứ đâu phải là 8/15 đâu
\( {X^2 -5x+4 \over x-1} +{x^2-8x+4 \over 2x+1} =0\)
Giải phương trình
Giài phương trình :
a, x4+2x3-3x2-8x-4=0
b, (x-2)(x+2)(x2-10)=72
c, 2x3+7x2+7x+2=0
d, \({2x \over x+1}\)+\({18\over x^2+2x-3}\)=\({2x-5 \over x+3}\)
Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)
a) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)
b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)
\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)
c) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)
d) Xem lại đề
d, 2x/x+1 + 18/x^2-3 = 2x-5/x+3
Bài 1: Rút gọn
1) \(x^2-y^2 \over 6x^2y^2 \)÷ \(x+y \over 12xy\)
2) \(5x \over 2x+1 \) ÷ \(3x(x-1) \over 4x^2-1\)
3)( \(2x-1\over 2x+1 \)-\(2x-1\over 2x+1 \)) ÷ \(4x \over 10x-5 \)
4) \(2\over 9x^2+6x+1 \)- \(3x \over 9x^2-1 \)
5) (\(5\over x^2+2x+1 \)+\(2x \over x^2-1 \)) ÷ \(2x^2+7x-5 \over 3x-3\)
6) (\(3\over x-3 \)+ \(2x \over x^2-9 \) + \(x\over x+3 \)) ÷ \(2x\over x+3\)
7) (\(3\over x^2-9 \)+\(1\over x^2+3x \)-\(1\over x^2-3x \)) ÷ \(x-2\over 2x^2+6x\)
1)
ĐK: \(x,y\neq 0\); \(x+y\neq 0\)
\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)
\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)
2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)
\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)
\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)
3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)
\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)
4) ĐK: \(x\neq \frac{\pm 1}{3}\)
\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)
\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)
\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)
5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)
\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)
\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)
\(=\frac{3}{(x+1)^2}\)
6) ĐK: \(x\neq \pm 3\); 0
\(\left(\frac{3}{x-3}+\frac{2x}{x^2-9}+\frac{x}{x+3}\right): \frac{2x}{x+3}\)
\(=\left(\frac{3(x+3)}{(x-3)(x+3)}+\frac{2x}{(x-3)(x+3)}+\frac{x(x-3)}{(x+3)(x-3)}\right). \frac{x+3}{2x}\)
\(=\frac{3(x+3)+2x+x(x-3)}{(x-3)(x+3)}.\frac{x+3}{2x}\)
\(\frac{(x^2+2x+9)(x+3)}{(x-3)(x+3).2x}=\frac{x^2+2x+9}{2x(x-3)}\)
7) ĐK: \(x\neq 2; \pm 3;0\)
\(\left(\frac{3}{x^2-9}+\frac{1}{x^2+3x}-\frac{1}{x^2-3x}\right): \frac{x-2}{2x^2+6x}\)
\(=\left(\frac{3x}{x(x-3)(x+3)}+\frac{x-3}{x(x-3)(x+3)}-\frac{x+3}{(x+3)x(x-3)}\right).\frac{2x(x+3)}{x-2}\)
\(=\frac{3x+x-3-(x+3)}{x(x-3)(x+3)}.\frac{2x(x+3)}{x-2}\)
\(=\frac{3x-6}{x(x-3)(x+3)}.\frac{2x(x+3)}{x-2}=\frac{3(x-2).2x(x+3)}{x(x-3)(x+3)(x-2)}=\frac{6}{x-3}\)
\({2\over x^3 -x^2 -x +1} = {3\over 1 -x^2} - {1\over x -1}\) ;\({x\over x^2 +5x+6}={2\over x^2 +3x+2}\) ;
giải phương trình khi a=1
\({x^6-1\over x^3} - (2a+1){x^2-1\over x} +2a-3 =0\)
và tìm a để phương trình có nhiều hơn 2 nghiệm dương phân biệt