Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Harry James Potter
Xem chi tiết
nguyen le duy hung
Xem chi tiết
luyen hong dung
15 tháng 6 2018 lúc 16:05

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................

Phạm Thùy Linh
Xem chi tiết
Nguyễn Ngọc Vy
11 tháng 6 2017 lúc 21:54

ĐK: \(\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)

\(\Leftrightarrow\frac{\left(ax-1\right)\left(x+1\right)+b\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{a\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow\left(ax-1\right)\left(x-1\right)+b\left(x-1\right)=a\left(x^2+1\right)\)

\(\Leftrightarrow ax^2-ax-x+1+bx-b=ax^2+a\)

Phạm Thùy Linh
Xem chi tiết
Pé Jin
Xem chi tiết
Cô Hoàng Huyền
9 tháng 5 2017 lúc 11:08

a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)

Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.

Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)

Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)

Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]

Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)

Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))

b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)

\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)

Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)

Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)

khong có
Xem chi tiết
Trần Quốc Khanh
12 tháng 3 2020 lúc 7:03

\(\Leftrightarrow\frac{\left(ax-1\right)\left(x+1\right)}{x^2-1}+\frac{b\left(x-1\right)}{x^2-1}=\frac{a\left(x^2+1\right)}{x^2-1}\left(x\ne+-1\right)\)

\(\Rightarrow ax^2+ax-x-1+bx-b=ax^2+a\)

\(\Leftrightarrow ax+bx-a-b-x-1=0\)

\(\Leftrightarrow ax+bx-x-a-b+1=2\)

\(\Leftrightarrow x\left(a+b-1\right)-\left(a+b-1\right)=2\)

\(\Leftrightarrow\left(x-1\right)\left(a+b-1\right)=2\left(1\right)\)

-(1) vô nghiệm khi x=+-1

-(1) có nghiệm duy nhất \(x=\frac{2}{a+b-1}+1=\frac{a+b+1}{a+b-1}\).

Khi đó \(\left\{{}\begin{matrix}\frac{a+b+1}{a+b-1}\ne1\\\frac{a+b+1}{a+b-1}\ne-1\end{matrix}\right.\)

\(\Leftrightarrow a+b+1\ne-\left(a+b-1\right)\)

\(\Leftrightarrow2\left(a+b\right)\ne0\Leftrightarrow a\ne-b\)

Khách vãng lai đã xóa
Trần
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 9:35

Hỏi đáp Toán

Nghịch Dư Thủy
Xem chi tiết
Lionel Messi
Xem chi tiết
Ơ Ơ BUỒN CƯỜI
21 tháng 5 2018 lúc 9:11

ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\)     (2) 

        Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\)  (3) 

TH1 : a = b = 0 

Điều kiện 2 luôn đúng , khi có : 

(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)

TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó : 

(3) \(\Leftrightarrow0x=0\),  phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)

TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó : 

(3) \(\Leftrightarrow0x=0\),  phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)

TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)

Khi đó : (3) \(\Leftrightarrow x=0\),  là nghiệm duy nhất của phương trình . 

TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)

Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)

Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)

KL : ............