Tìm giá trị của x để phân thức sau có giá trị bằng 0:
\(\frac{x^3+x^2-x-1}{x^3+2x-5}\)
Bài 1: Tìm giá trị của x để phân thức \(\frac{2x+2}{x^2-1}\)nhận giá trị bằng 0
Bài 2:Tìm x để giá trị của phân thức \(\frac{2x+3}{-x+5}\)bằng \(\frac{3}{4}\)
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
Tìm giá trị của x để phân thức sau có giá trị bặng 0 :
\(\frac{x^3+x^2-x-1}{x^3+2x-5}\)
Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0.Ví dụ giá trị của phân thức x 2 - 25 x + 1 = 0 khi x 2 - 25 = 0 và x + 1 ≠ 0 hay (x - 5)(x + 5) = 0 và x ≠ -1. Vậy giá trị của phân thức này bằng 0 khi x = ± 5. Tìm các giá trị của của x để giá trị mỗi phân thức sau có giá trị bằng 0?
98 x 2 - 2 x - 2
Phân thức = 0 khi
98
x
2
+
2
=
0
và x – 2
≠
0
Ta có: x – 2 ≠ 0 ⇔ x ≠ 2
98 x 2 + 2 = 0 ⇔ 2 49 x 2 - 1 = 0 ⇔ (7x + 1)(7x – 1) = 0
Ta có: thỏa mãn điều kiện x
≠
2
Vậy thì phân thức
có giá trị bằng 0.
Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0.Ví dụ giá trị của phân thức x 2 - 25 x + 1 = 0 khi x 2 - 25 = 0 và x + 1 ≠ 0 hay (x - 5)(x + 5) = 0 và x ≠ -1. Vậy giá trị của phân thức này bằng 0 khi x = ± 5. Tìm các giá trị của của x để giá trị mỗi phân thức sau có giá trị bằng 0?
3 x - 2 x 2 + 2 x + 1
Phân thức khi 3x – 2 = 0 và
x
+
1
2
≠
0
Ta có: x + 1 2 ≠ 0 ⇔ x + 1 ≠ 0 ⇔ x ≠ - 1
3x – 2 = 0 ⇔
Ta có: thỏa mãn điều kiện x
≠
- 1
Vậy thì phân thức
có giá trị bằng 0.
Tìm điều kiện để phân thức \(\frac{2x-2}{x^2-x}\) được xác định
a) Tính giá trị của phân thức tại x=3 và x=0
b) Tính giá trị của x để phân thức có giá trị bằng 2
c) Tìm giá trị của x để phân thức có giá trị là số nguyên
Đặt phân thức đã cho là A
\(ĐKXĐ:x^2-x\ne0\)\(\Leftrightarrow x\left(x-1\right)\ne0\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
a) \(A=\frac{2x-2}{x^2-x}=\frac{2\left(x-1\right)}{x\left(x-1\right)}=\frac{2}{x}\)
Với \(x=3\)( thoả mãn ĐKXĐ ) \(\Rightarrow A=\frac{2}{3}\)
Với \(x=0\)( không khoả mãn ĐKXĐ ) \(\Rightarrow\)Không tìm được giá trị của A
b) \(A=2\)\(\Leftrightarrow\frac{2}{x}=2\)\(\Leftrightarrow x=1\)( không thoả mãn ĐKXĐ )
Vậy không tìm được giá trị của x để \(A=2\)
c) A có giá trị nguyên \(\Leftrightarrow\frac{2}{x}\inℤ\)\(\Leftrightarrow2⋮x\)\(\Leftrightarrow x\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
So sánh với ĐKXĐ \(\Rightarrow x=1\)không thoả mãn
Vậy A nguyên \(\Leftrightarrow x\in\left\{-2;-1;2\right\}\)
ĐKXĐ:
----------->x khác 0
---------->(x-1) khác 0 ----------> x khác 1
VẠY ĐKXĐ LÀ X khác 0 và 1.
Bạn tự rút gọn nha
a, 2x-2\ x^2-x= 2\x
Thay x=3 vào biểu thức có:
-----> = 2\3
Vậy nếu thay x=3 vào biểu thức thì = 2\3
thay x=0 vào biểu thức có
------> = 0 vì 2\0=0
VẬY nếu thay x=0 thì biểu thức thì =0
b,
theo đề bài ta có
2\x=2
-----> 2:x=2
Vậy x=1
Câu c mik ko chắc nên bn tự làm nha
mik rất sorry:(((((((
\(x^2-x=x\left(x-1\right)\)
Phân thức xác định khi: \(\Leftrightarrow x\left(x-1\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
ĐKXĐ: \(x\ne0,x\ne1\)
a) Ta có: \(A=\frac{2x-2}{x^2-x}=\frac{2\left(x-1\right)}{x\left(x-1\right)}=\frac{2}{x}\)
+) Với x = 3
\(A=\frac{2}{3}\)
+) Với x = 0 (không tmđk)
=> Loại
\(A=2\Rightarrow\frac{2}{x}=2\Rightarrow x=1\)(không tmđk)
cho biểu thức :\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a, tìm điều kiện của biến x để giá trị của biểu thức được xác định
b, tìm giá trị của x để giá trị của biểu thức bằng 1
c, tìm giá trị của x để giá trị của x= -\(\frac{1}{2}\)
d, tìm giá trị của x để giá trị của biểu thức bằng -3
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5
b/ Gọi biểu thức là A. Rút gọn A ta được:
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)
A=1 => x-1=2 => x=3
c/ A=-1/2 <=> x-1=-1 => x=0
d/ A=-3 <=> x-1=-6 => x=-5
Cho phân thức \(M=\left[\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x+1}\right]:\frac{x^2+x}{x^3+x}\)
a) Tìm điều kiện để giá trị của biểu thức xác định
b) tìm giá trị của x để biểu thức bằng 0
c) Tìm x khi giá trị tuyệt đối của M=1
Cho phân thức \(\frac{x^2-10x+25}{x^2-5x}\)
a) Tìm giá trị của biến để giá trị của phân thức bằng 0.
ĐK : \(x\ne0\) và \(x\ne5\)
Rút gọn : \(\frac{x-5}{x}\); Không có giá trị nào của x để giá trị của phân thức bằng 0
b ) Tìm x để giá trị của phân thức bằng \(\frac{5}{2}.\left(x=\frac{-10}{3}\right)\)
c) Tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên .
\(\left(\frac{x-5}{x}=1-\frac{5}{x};x\in\left\{-5;-1;1\right\}\right)\)
Cho phân thức A=\(\frac{3x^3+6x^2}{x^3+2x^2+x+2}\)
a)Tìm điều kiện của x để giá trị của phân thức được xác định
b)Tìm giá trị của x để phân thức có giá trị bằng 2
a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0
=> x^2(x+2)+(x+2) Khác 0
=> (x^2+1)(x+2) khác 0
=> x^2 khác -1(vô lý) và x khác -2
Vậy x khác -2 thì biểu thức A được xác định
b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)
Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)
\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)