Tìm x,y thỏa mãn \(3x^2+y^2+2x-2y-1=0\) và \(2x^2+2xy=2\)
1. Chứng minh rằng không có các số x, y thỏa mãn
a) 2x^2 +2x +1 = 0
b) x^2 + y^2 + 2xy +2y +2x +2 = 0
c) 3x^2 - 2x + 1 +y^2 - 2xy +1 = 0
d) 3x^2 + y^2 +10x – 2xy + 26 = 0
2. Tìm giá trị nhỏ nhất của
a) A = 2x^2 + 2x + y^2 -2xy
b) B = 2a^2 + b^2 + c^2 - ab + ac + bc
GIÚP MÌNH VỚI Ạ! MÌNH CẢM ƠN.
2)
\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)
\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)
Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).
Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).
\(B=2a^2+b^2+c^2-ab+ac+bc\)
\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)
\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)
\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)
Dấu \(=\)khi \(a=b=c=0\).
Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).
1.
a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm)
suy ra đpcm
b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)
c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)
d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)
\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)
TÌM X,Y THỎA MÃN : 2x^2 + y^2 - 2xy - 2y -2x + 5 = 0
Ttìm cặp số x, y nguyên thỏa mãn 5x^2 +y^2 -2xy+2x-6y+1<0
Tìm cặp số x,y thỏa 5x^2 +2y+y^2 -4x-40=0
Giải hệ phương trình sau:
xy(x-y)=2
9xy(3x-y)+6=26x^3 -2y^3
5x2+2y+y2-4x-40=0
△=(-4)2-4.5.(2y+y2-40)
△=16-40y-20y2+800
△=-(784+40y+20y2)
△=-(32y+8y+16y2+4y2+16+4+764)
△=-[(4y+4)2+(2y+2)2+764]<0
=>PHƯƠNG TRÌNH VÔ NGHIỆM.
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
1. Giải phương trình sau: \(\frac{9x}{2x^2+3x+3}-\frac{x}{2x^2-x+3}=8\)2. Tìm các số nguyên x, y thỏa mãn \(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
tìm x,y thỏa mãn 3x^2+y^2+2x-2y-1=0
Bài 1 Tìm cặp số (x;y) thỏa mãn biểu thức sau
2x^2+y^2-2xy-10x+6y+13=0
x^2+7y^2-4xy-2x-2y+4=0
11x^2+y^2-6xy-14x+2y+9=0
Tìm x, y thỏa mãn: \(2x^2+y^2-2xy+2x+1=0\)
\(2x^2+y^2-2xy+2x+1=0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2+2x+1=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-y=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\x=-1\end{matrix}\right.\)
=> x=y=-1
Tìm các số nguyên x,y thỏa mãn 2x2 + 2y2 - 2xy + x + y=0