Chứng minh rằng: Luôn tạo được một hình bình hành bằng việc nối 4 trung điểm của 4 cạnh trong một tứ giác bất kì (cả tứ giác lồi và lõm).
Gọi đoạn nối trung điểm hai cạnh đối diện của một tứ giác lồi là đường trung bình của tứ giác đó. Chứng minh rằng nếu tổng độ dài hai đường trung bình của một tứ giác bằng nửa chu vi thì tứ giác đó là một hình bình hành
Gọi M. N, P và Q theo thứ tự là trung điểm các cạnh AB, CD, BC và DA của tứ giác lồi ABCD
Khi đó :
\(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\) và \(\overrightarrow{PQ}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{CD}\right)\)
Ta có : \(\left|\overrightarrow{MN}\right|+\left|\overrightarrow{PQ}\right|=\frac{1}{2}\left(\left|\overrightarrow{AD}+\overrightarrow{BC}\right|+\left|\overrightarrow{BA}+\overrightarrow{CD}\right|\right)\)
\(\le\frac{1}{2}\left(\left|\overrightarrow{AD}\right|+\left|\overrightarrow{BC}\right|+\left|\overrightarrow{BA}\right|+\left|\overrightarrow{CD}\right|\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{BC}\) và \(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)
Suy ra điều cần chứng minh
M là 1 điểm bất kì nằm ở miền trong của tứ giác. Chứng minh rằng điểm đối xứng của M qua trung điểm các cạnh của tứ giác là các đỉnh của 1 hình bình hành
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
a/ Chứng minh rằng đoạn thẳng nối trung điểm 2 đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác gặp nhau tại 1 điểm
b/ Dùng định lý trên chứng tỏ rằng nếu một tứ giác có các đường thẳng nối trung điểm các cạnh đối đi qua giao điểm hai đường chéo thì tứ giác đó là hình bình hành
Cho 5 điểm bất kỳ. Chứng minh rằng luôn tồn tại 4 điểm tạo thành 1 hình tứ giác lồi.
mik ko bít
I don't now
................................
.............
Một tứ giác lồi có 4 cạnh đều là số tự nhiên sao cho tổng 3 số bất kì trong chúng chia hết cho số còn lại. Chứng minh rằng tứ giác đó có ít nhất 2 cạnh bằng nhau ?
Ta sẽ dùng phản chứng
Gọi 4 cạnh của tứ giác là a , b , c , d ( a,b,c,d \(\inℕ^∗\))
Giả sử không có bất kì 2 cạnh nào bằng nhau
Đặt \(\hept{\begin{cases}x=\frac{b+c+d}{a}\\y=\frac{c+d+a}{b}\\z=\frac{d+a+b}{c}\end{cases}}\left(x;y;z\inℕ^∗\right)\)(Do tổng 3 cạnh bất kì chia hết cho cạnh còn lại)
Theo bất đẳng thức trong tứ giác thì dễ thấy \(x;y;z>1\)
Mà x,y,z là số tự nhiên nên \(x;y;z\ge2\)
Không mất tính tổng quát của bài toán ta giả sử a > b > c > d thì khi đó x < y < z
Ta có : \(\hept{\begin{cases}x\ge2\\y>x\end{cases}}\Rightarrow y\ge3\)
tương tự : \(z\ge4\)
Từ điều giả sử\(\Rightarrow\) \(\hept{\begin{cases}b+c+d\ge2a\\c+d+a\ge3b\\d+a+b\ge4c\end{cases}}\)
Cộng 3 vế vào ta được \(2a+2b+2c+3d\ge2a+3b+4c\)
\(\Rightarrow3d\ge b+2c\)(Vô lí do b > c > d)
Nên điều giả sử là sai
Vậy luôn tồn tại ít nhất 2 cạnh bằng nhau trong tứ giác đó
Cho tứ giác lồi ABCD. GỌI M là một điểm nằm bên trong tứ giác và N là một điểm nằm bên ngoài tứ giác. biết các tứ giác ABMD, BMCN LÀ hình bình hành,. CHỨNG MINH GÓC NAB bằng góc MDC
chứng minh rằng tứ giác có tổng các đoạn thẳng nối trung điểm của cạnh đối diện bằng nửa chu vi của nó là hình bình hành là hình bình hành
Bài 1: Cho tam giác nhọn ABC có BC = 2AB. Lấy điểm D sao cho ABCD là hình bình hành. Gọi E là hình chiếu của C trên AB, M là trung điểm của AD. Chứng minh rằng góc BAD = 2 x góc AEM
Bài 2. Chứng minh rằng trong một tứ giác, đoạn thẳng nối trung điểm hai đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác đồng quy.
Bài 3. Cho điểm D nằm trong tam giác ABC. Vẽ các tam giác đều BDE, CDF (E, D, F nằm cùng phía đối với BC). Biết rằng tứ giác AEDF là hình bình hành. Chứng minh rằng
a) góc BDC = góc BEA và tam giác BDC = tam giác BEA.
b) Tam giác ABC là tam giác đều.
Giúp mik với nha !!! Tí nữa mik cần gấp rồi !!!
C/m rằng nếu tổng độ dài 2 đoạn thẳng nối các trung điểm của các cạnh đối diện của một tứ giác bằng một nữa chu vi của tứ giác đó thì tứ giác đó là hình bình hành