Chứng tỏ:
(91945-21930) chia hết cho 5
(42010+22014) chia hết cho 10
Chứng tỏ rắng 42010+22014 chia hết cho 10
Hiển nhiên \(P=4^{2010}+2^{2014}⋮2\). Ta chỉ cần chứng minh \(P⋮5\) là xong.
Trước hết ta chứng minh \(A=4^{2n}-1⋮5\), với mọi \(n\inℕ\) (*)
Với \(n=0\) thì \(A=0⋮5\). Với \(n=1\) thì \(A=15⋮5\).
Giả sử (*) đúng đến \(n=k\). Với \(n=k+1\), ta có:
\(A=4^{2\left(k+1\right)}-1\) \(=16.4^{2k}-1\) \(=16\left(4^{2k}-1\right)+15⋮5\), vậy (*) được chứng minh. Do đó \(4^{2010}-1⋮5\) (1)
Bây giờ ta sẽ chứng minh \(B=2^{4n+2}+1⋮5\) với mọi \(n\inℕ\). (**)
Với \(n=0\) thì \(B=5⋮5\). Với \(n=1\) thì \(B=65⋮5\).
Giả sử (**) đúng đến \(n=k\). Với \(n=k+1\) thì
\(B=2^{4\left(k+1\right)+2}+1\) \(=16.2^{4k+2}+1\) \(=16\left(2^{4k+2}+1\right)-15⋮5\)
Vậy (**) được chứng minh. Do đó \(2^{2014}+1⋮5\) (2)
Từ (1) và (2), suy ra \(P=4^{2010}+2^{2014}=\left(4^{2010}-1\right)+\left(2^{2014}+1\right)⋮5\)
Như vậy \(2|P,5|P\Rightarrow10|P\) (đpcm)
Cho F=42010 +22014 . chứng minh F chia hết cho 10
42k42k có tận cùng là 6 => 4201042010 có tận cùng là 66
22014=4100722014=41007
42k+142k+1 có tận cùng là 4=>220144=>22014 có tận cùng là 44
=> 42010+2201442010+22014 có tận cùng là 0 nên chia hết cho 10
mình làm có đúng ko các bạn?
Hình như là không
Quá dài nên có thể lẫn lộn
Cách đơn giản hơn
Ta có:
41=4
42=16
43=64
44=256
...
=>Số 4 mũ lẽ tận cùng = 4. Số 4 mũ chẵn tận cùng = 6
Áp dụng vào 42010 ta có:
42010 có mũ là số chẵn
=> 42010 tận cùng là số 6
Tương tự áp dụng vào 22014 :
Ta có:
21= 2
22 = 4
23 = 8
24 =16
25= 32
26 = 64
...
=> Số tận cùng của kết quả theo chu kì 2, 4, 8, 6.
Ta có: 2014 : 4 = 503 (dư 2)
Vậy theo chu kì thì 22014 tận cùng bằng số 4
Ta có:
42010 tận cùng = 6
22014 tận cùng = 4
Tận cùng 2 thừa số này cộng lại ra 10
=> 42010 + 22014 có tận cùng là số 0
=> 42010 + 22014 chia hết cho 10
Chúc bạn hok tốt!
#TTVN
Chứng minh: (42010+22014) ⋮ 10
A = (42010 + 22014) ⋮ 10
42010 = (42)1005
42010 = \(\overline{...6}\)1005 = \(\overline{..6}\) (1)
22014 = (2503)4.22 = \(\overline{..6}\)4.4
22014 = \(\overline{..6}\).4 = \(\overline{..4}\) (2)
Cộng vế với vế của biểu thức (1) và (2) ta có:
A = 42010 + 22014 = \(\overline{..6}\) + \(\overline{..4}\) = \(\overline{..0}\) ⋮ 10 (đpcm)
chứng tỏ rằng : a=10! + 1.3.5...9 chia hết cho 5
chứng tỏ rằng : b=10! + 1.3.5...9 + 2009 chia hết cho 2
chứng tỏ rằng : c= 17^17 + 13^13 chia hết cho 2 và 5
chứng tỏ rằng : d= 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
21930 . 91945
Chứng tỏ rằng
a. (10^7+5) chia hết cho 3 và chia hết cho 5
b. (10^m+8) chia hết cho 2 và chia hết cho 9
a ) Ta có :
107 có 7 số 0 và 1 số 1
Nên khi cộng thêm 5 ta có tổng các chữ số là :
1 + 5 = 6\(⋮\)3
Vì : 107 + 5 có số cuối là 5 nên\(⋮\)5
=> 107 + 5\(⋮\)3 và 5
b ) Ta có :
10m + 8 chẵn
=> 10m + 8\(⋮\)2
Ta có :
10m + 8 có tổng\(⋮\)9
=> 10m + 8\(⋮\)2 và 9
chứng tỏ:
a) 10 mũ 44 + 5 chia hết cho 3 và 5
b) 10 mũ 18 +53 chia hết cho 9 nhưng ko chia hết cho 2
a) 1044 + 5 = 100...0 ( 44 cs 0 ) + 5 = 100...5 có tận cùng là 5 => chia hết cho 5 (1)
có tổng các chữ số = 6 chia hết cho 3 => chia hết cho 3 (2)
Từ (1) và (2) => đpcm
b) 1018 + 53 = 100...0 ( 18 cs 0 ) + 53 = 100..53 có tổng các chữ số = 9 chia hết cho 9 => chia hết cho 9 (1)
có tận cùng là 3 không chia hết cho 2 => không chia hết cho 2 (2)
Từ (1) và (2) => đpcm
cho mik hỏi cái nha các bạn :
a) tuừ 1 đến 1000 có bao nhiêu số chia hết cho 5
b) chứng tỏ : 10^2016 + 8 sẽ chia hết cho 9
c) chứng tỏ 10^2106 + 4 chia hết cho 3
Chứng tỏ rằng:
A)10^9+2 chia hết cho 3
B)10^10-1 chia hết cho 9
C)6^100-1 chia hết cho 5
D)21^20-11^10 chia hết cho 2 và 5
a/ 109 =100000...0 (9 chữ số 0) => 109 +2 = 100000..0002 (8 chữ số 0)
Tổng các chữ số =1+2=3 => 109 +2 chia hết cho 3
b/ 1010 = 100000..000 (10chữ số 0) => 1010 - 1 = 9999...9999 (10 chữ số 9)
Tổng các chữ số là 10x9=90 => chia hết cho 9
c/ và d/ cũng tương tự
Chứng tỏ rằng 1044 + 5 vừa chia hết cho 3 vừa chia hết cho 5
\(^{10^{44}+5=1000...0+5=1+0+0+...+0+5=6⋮3}\) ( 44 chữ số 0)
\(10^{44}+5=1000...05⋮5\) ( vì có tận cùng là 5); (44 chữ số 0)