Cho biểu thức \(C=\frac{2018}{x^2+2x+2019}\) . Tìm GTLN của C
a) Tìm GTNN của biểu thức A = x − 2018 + − 100 + x − 2019
b) Tìm GTLN của biểu thức B = 4 − 5 x − 2 − 3 y + 12
Tìm GTLN của biểu thức A= /x-2019/-/x-2018/
\(A=\left|x-2019\right|-\left|x-2018\right|\)
Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)ta có :
\(A\ge\left|x-2019-x+2018\right|=\left|-1\right|=1\)
Vậy ................
Nhầm Chỗ A
Sửa thành \(A\le\left|x-2019-x+2018\right|=\left|-1\right|=1\)
bài 1: tìm GTNN của biểu thức sau: B= |x-2018| + |x-2019| + |x-2020|
bài 2: tìm GTNN của biểu thức sau: C= \(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon trước :3
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Bài 1 :
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)
\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)
Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)
Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020
Tìm x biết:
\((5^x+5^{x+1}+5^{x+2}):31=(3^{2x}+3^{2x+1}+3^{2x+2}):13\)
CMR:
\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2018}}+\frac{1}{3^{2019}}-\frac{1}{2}\) là một số âm
Với giá trị nào của x thì biểu thức:
\(M=\frac{2|2018x-2019|+2019}{|2018x-2019|+1}\) đạt giá trị lớn nhất
Cho a+b+c=2019 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{2019}\)
Tính \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{b+a}\)
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
trả lời...............................
ok..................................
hk tốt...............................
cho a,b,c thỏa mãn: \(\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức : A=\(A=\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}\times b^{2018}\times c^{2019}}\)
Tìm GTNN và GTLN của biểu thức
a) |x-1|+2018
b) \(^{\left(2x-1\right)^4}\)-2015
c) 4-|3x+1|
d) \(\left(3x+2\right)^2\)+|x-1|-18
e) \(-\left(x+1\right)^5\)-|3x-2|-2019
a) \(A=\left|x-1\right|+2018\)
Vì \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow A\ge2018\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(Tacó:\)
\(|x-1|\ge0\Rightarrow|x-1|+2018\left(\cdot\right)\ge2018\)
\(\Rightarrow GTNNcua\left(\cdot\right)=2018\)
Dấu "=" xảy ra khi: x=1
Vậy (*) Đạt GTNN là: 2018 khi: x=1
b) \(B=\left(2x-1\right)^4-2015\)
Vì \(\left(2x-1\right)^4\ge0\forall x\)
\(\Rightarrow B\ge-2015\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Tìm GTLN,GTNN của biểu thức a,(x-2)^2+2019 b,(x-3)^2+(y-2)^2-2018 c,-(3-x)^100-3.(y+2)^200+2020. d,-|x-1|-2.(2y-1)^2+100
a) \(\left(x-2\right)^2+2019\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)
Dấu '=' xảy ra khi
\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2
b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2
c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)
Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)
\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)
Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)
\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)
Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)
\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2
d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)
Ta có: \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow-\left|x-1\right|\le0\forall x\)
Ta có: \(\left(2y-1\right)^2\ge0\forall y\)
\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)
Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)
Tìm GTLN của biểu thức A=-x^4+2x^3-3x^2+4x+2018
\(A=-\left(x^4-2x^3+3x^2-4x-2018\right)=-\left[\left(x^4+x^2+4-2x^3+4x^2-4x\right)-2x^2\right]+2022\)
\(=-\left[\left(\left(x^2\right)^2+\left(x\right)^2+\left(2\right)^2-2\cdot x^2\cdot x+2\cdot x^2\cdot2-2\cdot x\cdot2\right)-2x^2\right]+2022\)
\(=-\left[\left(x^2-x+2\right)^2-2x^2\right]+2022\le2022\)
Mong bạn thông cảm, mình không chắc là đã giải đúng, có gì bỏ qua cho mình nhé!
Tìm GTLN của biểu thức :
a, A = 2019 - (3x +8 )
b, B = 12 - (x + 2 )2 + (2x - y )2
Tìm GTNN của biểu thức :
a, A = (6x - 1)2 + 2018
b, B = 15 + I 2x +1 I
giải theo cách của lớp 7 nha
lm đúng t tick
Câu a sai đề nên mik sửa lại nha
a) \(A=2019-\left(3x+8\right)^2\)
Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)
Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)
b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)
Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)
Vậy ...
b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)
Vậy ...
\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)
Dấu "=" xảy ra khi \(2x+1=15=>x=7\)
Vậy ...
\(a,A=2019-\left(3x+8\right)\)
GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)
\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)
GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)
\(a,A=\left(6x-1\right)^2+2018\ge2018\)
Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)
Vậy GTNN của A là 2018 khi x = 1/6
B ko hiểu