tìm x biết\(\frac{x+7}{-20}=-\frac{5}{x+7}\) (x khác -7)
Tìm x, biết:
\(\begin{array}{l}a)x - \left( {\frac{5}{4} - \frac{7}{5}} \right) = \frac{9}{{20}}\\b)9 - x = \frac{8}{7} - \left( { - \frac{7}{8}} \right)\end{array}\)
\(\begin{array}{l}a)x - \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right) = \dfrac{9}{{20}}\\x = \dfrac{9}{{20}} + \left( {\dfrac{5}{4} - \dfrac{7}{5}} \right)\\x = \dfrac{9}{{20}} + \dfrac{{25}}{{20}} - \dfrac{{28}}{{20}}\\x = \dfrac{{6}}{{20}}\\x = \dfrac{{ 3}}{{10}}\end{array}\)
Vậy \(x = \dfrac{{ 3}}{{10}}\)
\(\begin{array}{*{20}{l}}{b)9 - x = \dfrac{8}{7} - \left( { - \dfrac{7}{8}} \right)}\\\begin{array}{l}9 - x = \dfrac{8}{7} + \dfrac{7}{8}\\9 - x = \dfrac{{64}}{{56}} + \dfrac{{49}}{{56}}\\9 - x = \dfrac{{113}}{{56}}\end{array}\\{x = 9 - \dfrac{{113}}{{56}}}\\{x = \dfrac{{504}}{{56}} - \dfrac{{113}}{{56}}}\\{x = \dfrac{{391}}{{56}}}\end{array}\)
Vậy \(x = \dfrac{{391}}{{56}}\)
bài 1 tìm x,y,z
a,\(\frac{x}{10}\)=\(\frac{y}{15}\),x=\(\frac{7}{2}\)và x+2y-3z=20
b,2x=3y,49=57 và 4x-3y+5z=7
c,\(\frac{2x}{3}\)=\(\frac{3y}{4}\)=\(\frac{47}{5}\)và x+y+z=49
2 tìm x trong các tỉ lệ thức sau
a, \(\frac{x-3}{x+5}=\frac{5}{7}\)
b,\(\frac{7}{x-1}\)\(=\frac{x+1}{9}\)
c \(\frac{x+4}{20}=\frac{5}{x+4}\)
d,\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
bài 3: tìm các số x,y,z
a,\(\frac{x}{y}=\frac{7}{10}=\frac{z}{9}\)
b,\(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\) và x-y+z=-15
c,\(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
bài 4 tìm các số x,y,z
a,5x=8y=20z và x-y-z=3
b ,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và -x+y+z=-120
bài 5 tìm x,y,z biết
và xyz=20
bài 6 tìm x,y,z biết
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)và x2 + y2 -z2 =585
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
Tìm x biết
a, \(\frac{23+x}{201-x}=\frac{3}{5}\)
b, \(x+20=\frac{5}{7}\left(3x-20\right)\)
a, \(\frac{23+x}{201-x}=\frac{3}{5}\)
\(\Rightarrow\left(23+x\right)5=3\left(201-x\right)\)
\(\Rightarrow115+5x=603-3x\)
\(\Rightarrow5x+3x=603-115\)
\(\Rightarrow8x=448\Rightarrow x=61\)
Vậy x = 81
\(x+20=\frac{5}{7}\left(3x-20\right)\)
\(\Leftrightarrow7x+140=15x-100\)
\(\Leftrightarrow15x-7x=140+100\)
\(\Leftrightarrow8x=240\Rightarrow x=30\)
Vậy x = 30
\(a,\frac{23+x}{201-x}=\frac{3}{5}\)
\(\frac{5.\left(23+x\right)}{5.\left(201-x\right)}=\frac{3.\left(201-x\right)}{5.\left(201-x\right)}\)
\(5.\left(23+x\right)=3.\left(201-x\right)\)
\(115+5x=603-3x\)
\(5x+3x=603-115\)
\(8x=488\)
\(x=61\)
\(b,x+20=\frac{5}{7}\left(3x-20\right)\)
\(\frac{7\left(x+20\right)}{7}=\frac{5\left(3x-20\right)}{7}\)
\(7x-140=15x-100\)
7x-15x=-100+140
-8x=40
x=-5
Tìm x,y thuộc Z biết \(\frac{3+x}{7+x}=\frac{3}{7}\)và x+y=20
1.Tìm x,y,z, biết :\(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\) và x-y-z = 78
2.Tìm x trong các tỉ lệ thức sau:
a) \(\frac{x-3}{x+5}=\frac{5}{7}\)
b) \(\frac{7}{x-1}=\frac{x+1}{9}\)
c) \(\frac{x+4}{20}=\frac{5}{x+4}\)
d) \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
3. Tìm các số x,y,z biết :
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)và x - 3y - 4z = 62
b) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x - y + z = -15
c) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x + 5y + 2z = 100
d) 5x = 8y = 20z và x - y - z = 3
Giúp với ạ, đang cần gấp
Tìm x biết \(\frac{x+4}{5}+\frac{x+2}{7}=\frac{x+5}{4}+\frac{x+7}{2}\)
\(\frac{x+4}{5}+\frac{x+2}{7}=\frac{x+5}{4}+\frac{x+7}{2}\)
\(\Rightarrow\left(\frac{x+4}{5}+1\right)+\left(\frac{x+2}{7}+1\right)=\left(\frac{x+7}{2}+1\right)+\left(\frac{x+2}{7}+1\right)\)
\(\Rightarrow\frac{x+9}{5}+\frac{x+9}{7}=\frac{x+9}{4}+\frac{x+9}{2}\)
\(\Rightarrow\frac{x+9}{2}+\frac{x+9}{4}-\frac{x+9}{7}-\frac{x+9}{5}=0\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{5}-\frac{1}{7}\right)=0\)
vì \(\frac{1}{2}+\frac{1}{4}-\frac{1}{5}-\frac{1}{7}\ne0\Rightarrow x+9=0\)
=>x=-9
vậy x=-9
Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Tìm số nguyên x,y biết:\(\frac{3+x}{7+x}=\frac{3}{7}\)và x+y=20
tìm x biết : \(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\frac{7^{x+2}+7^{x+1}+7^x}{57}=\frac{7^x.7^2+7^x.7+7^x}{57}=\frac{7^x.\left(7^2+7+1\right)}{57}=7^x\)
\(\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}=\frac{5^{2x}+5^{2x}.5+5^{2x}.5^3}{131}=\frac{5^{2x}\left(1+5+5^3\right)}{131}=\frac{25^x.131}{131}=25^x\)
\(\Rightarrow7^x=25^x\Rightarrow x=0\)
ai tích mình mình tích lại cho