Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bắc Nguyễn Việt
Xem chi tiết
Quản gia Whisper
2 tháng 4 2016 lúc 20:23

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2009^2}+\frac{1}{2010^2}>1\)

=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}+\frac{1}{2010^2}>\frac{ }{ }\)\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)

=\(\frac{1}{1}-\frac{1}{2010}=\frac{2010}{2010}-\frac{1}{2010}\)=\(\frac{2010}{2010}>\frac{1}{2010}=1>\frac{1}{2010}\)

Vậy \(1>\frac{1}{2010}\)

Bạn ơi sai đề nhé

Xem chi tiết
Nguyễn Thị Ngọc Thơ
9 tháng 5 2019 lúc 12:06

Ta có:

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

...

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)

giúp mk vs các bạn ưi ! mk đang cần gấp ai nhanh mik tích cho !nhanh nha help me!thank nhìu

Trần Lê Kiên
Xem chi tiết
Trần Lê Kiên
26 tháng 7 2018 lúc 22:14

bỏ số 2 ở đằng sau đi nhé

Le Nhat Phuong
Xem chi tiết
Nguyễn Triệu Khả Nhi
22 tháng 8 2017 lúc 14:45

 ta có 
1/2^2 < 1/(1.2)= 1-1/2 
1/3^2 <1/(2.3)=1/2-1/3 
1/4^2 <1/(3.4)=1/3-1/4 
...... 
1/100^2 < 1/99-1/100 
cộng vế với vế ta được 1/2^2 +1/3^2+...< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100 
=> 100/100-1/100

=>99/100

tk nha bn

Nguyễn Triệu Khả Nhi
22 tháng 8 2017 lúc 14:46

99/100<1 bn nha

Le Nhat Phuong
22 tháng 8 2017 lúc 14:52

Ta có: 

\(\frac{1}{2^2}< \frac{1}{2.1}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

Đáp số : ....

Bi Bi
Xem chi tiết
Vũ Cẩm Tú
3 tháng 6 2019 lúc 11:29

Ta có \(\frac{1}{k^2}=\frac{4}{4k^2}< \frac{4}{4k^2-1}=2\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\left(k\in N\cdot\right)\)

Khi đó \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\left(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\right)\\ =2\left(\frac{1}{3}-\frac{1}{2n+1}\right)< \frac{2}{3}\)

Pham Thuy Linh
Xem chi tiết
nguyen thi quynh huong
Xem chi tiết
Giáp Minh Anh
14 tháng 4 2019 lúc 13:15

Ô...mai..gót

Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K

Hãy đăng từng câu một 

Ai đồng quan điểm

Trương Thanh Long
14 tháng 4 2019 lúc 13:42

Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?

nguyen thi quynh huong
14 tháng 4 2019 lúc 13:42

Nhưng ai biết câu nào thì làm câu đấy mình đâu bắt các bạn làm hết đâu

Lê Tài Bảo Châu
Xem chi tiết
Pham Van Hung
26 tháng 3 2019 lúc 17:41

Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)

Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)

Do đó nhân vế với vế, ta được: 

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)

\(\Rightarrow A^2< \frac{1}{2015}\)

Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)

Từ (1) và (2), ta được: 

\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)

\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)

TranNgocThienThu
Xem chi tiết
Thanh Tùng DZ
27 tháng 7 2017 lúc 19:54

sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)