Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
congtutramhoa
Xem chi tiết
Trịnh Hà
Xem chi tiết
Nguyễn Vũ An
Xem chi tiết
Nguyễn Vũ An
Xem chi tiết
nguyen  truong huy
Xem chi tiết
toan pham
Xem chi tiết
Minh Anh Tran
Xem chi tiết
CHANNANGAMI
Xem chi tiết
...:v
8 tháng 2 2021 lúc 17:03

Lạ nhỉ, tui chả biết dạng này dạng gì nữa :D

\(\lim\limits\dfrac{\left(n+1\right)\left(\sqrt{3n^2+2}+\sqrt{3n^2-1}\right)}{n^2\left(3n^2+2-3n^2+1\right)}=\lim\limits\dfrac{\left(\dfrac{n}{n}+\dfrac{1}{n}\right)\left(\sqrt{\dfrac{3n^2}{n^2}+\dfrac{2}{n^2}}+\sqrt{\dfrac{3n^2}{n^2}-\dfrac{1}{n^2}}\right)}{3n^2}=\dfrac{2\sqrt{3}}{3}=\dfrac{2}{\sqrt{3}}\)

...:v
8 tháng 2 2021 lúc 16:09

Cậu ơi :( Cậu chụp cái đề lên được ko, khó hịu thực sự :( 

...:v
8 tháng 2 2021 lúc 16:41

Được rồi, biết gõ công thức rồi đó :)

\(D=\lim\limits\dfrac{n+1}{n^2\left(\sqrt{3n^2+2}-\sqrt{3n^2-1}\right)}\)

\(D=\lim\limits\dfrac{\dfrac{n}{n^3}+\dfrac{1}{n^3}}{\dfrac{n^2.\left(3n^2+2\right)^{\dfrac{1}{2}}}{n^3}-\dfrac{n^2\left(3n^2-1\right)^{\dfrac{1}{2}}}{n^3}}=0\)

Dung ko nhi :D?

thanh tinh bui
Xem chi tiết