Hãy chỉ ra luôn tồn tại 3000 số tự nhiên liên tiếp luôn là hợp số
Hãy chỉ ra luôn tồn tại 3000 số tự nhiên liên tiếp là hợp số.
16.Hãy chỉ ra 3000 số tự nhiên liên tiếp luôn là HS
15.Cho p;p+10 là các số nguyên tố >3 CM p+32 là HS
16.Hãy chỉ ra 3000 số tự nhiên liên tiếp luôn là HS
Chứng minh rằng với mọi số tự nhiên n luôn tồn tại n số tự nhiên liên tiếp không là số nguyên tố
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...
chứng tỏ rằng luôn chỉ ra được 2016 số tự nhiên liên tiếp là hợp số cả
chứng tỏ rằng luôn chỉ ra được 2016 số tự nhiên liên tiếp đều là hợp số cả
Chứng minh rằng với mọi số tự nhiên n luôn tồn tại n số tự nhiên liên tiếp không là số nguyên tố
Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).
Khoảng này có \(n\)số tự nhiên.
Với \(k\)bất kì \(k=\overline{2,n+1}\)thì
\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố.
Do đó ta có đpcm.
CMR trong 3 số tự nhiên lẻ liên tiếp luôn tồn tại một số chia hết cho 3
Ta gọi 3 số tự nhiên liên tiếp lak: a, a+1, a+2.
+ Nếu a chia hết cho 3=> btđcm
+ Nếu a ko chia hết cho 3:
-a:3 dư 1 thì a+2 chia hết cho 3=> btđcm
-a:3 dư 2 thì a+1 chia hết cho 3=> btđcm
(btđcm lak bài toán đc chứng minh nha bn.)
chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn tồn tại một số chia hết cho 3