Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Bảo Trâm
Xem chi tiết
Chính Lê Đức
Xem chi tiết
I don
14 tháng 5 2018 lúc 18:10

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\)

\(\Rightarrow A=B\left(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow\frac{A}{B^{2018}}=\frac{A}{A.B^{2017}}=\frac{1}{B^{2017}}\)

=> \(\frac{A}{B^{2018}}=\frac{1}{\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}+\frac{1}{2018}\right)^{2017}}\)

ha nguyen thi
Xem chi tiết
Ngô Bảo Ngọc
Xem chi tiết
Ngô Bảo Ngọc
25 tháng 3 2018 lúc 22:07

giúp mình lun nha mình đang cần gấp...mình k cho

Mặt Cười Gaming
Xem chi tiết
le phuong anh
Xem chi tiết
le phuong anh
3 tháng 3 2020 lúc 21:55

 sory mk ghi sai đề \(\frac{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)}{\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}}\)

Khách vãng lai đã xóa
cat
3 tháng 3 2020 lúc 22:04

Đặt \(T=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}\)  

Ta thấy tử số bằng với mẫu số nên phân số có giá trị bằng 1. 

Khách vãng lai đã xóa
Nguyễn Hoàng Danh
Xem chi tiết
Lê Hoàng Nhật Anh
Xem chi tiết
nguyen tran phuong vy
Xem chi tiết
Subin
19 tháng 9 2018 lúc 21:29

Ta có : S =\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\)\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)\(-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

\(\Rightarrow S=P\)

Khi đó : \(\left(S-P\right)^{2018}=0^{2018}=0\)

k chi mik nha!

-.-

Nguyễn Thị Thu Hà
11 tháng 8 2020 lúc 17:41

A=1+1/2+1/3+1/4+...+1/2^2018-1 Chứng tỏ A<2018

Khách vãng lai đã xóa