Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hồng Anh
Xem chi tiết
Nguyễn Thị Hồng Anh
14 tháng 3 2022 lúc 20:16

có b = 60 độ nha

 

Mai Lan
Xem chi tiết
Trần Tuyết Như
1 tháng 8 2015 lúc 19:43

1) 

Ta có tam giác ABC cân tại A    =>  góc B = góc C = (180 - 50) : 2 = 65 độ

2) 

Ta có: tam giác ABC cân tại A  => góc B = góc C = (180 - góc A) : 2 

mà  góc B = A + 300 

=> (1800 - góc A) : 2 = Â + 300

=> \(\frac{180}{2}-\frac{Â}{2}=Â+30^0\)

=> 900 - Â/2 = Â + 300

=> 900- 300 = Â + Â/2

=> \(60^0=\frac{3Â}{2}\Rightarrow3Â=60\cdot2=120\RightarrowÂ=\frac{120}{3}=40^0\)

=> góc B = góc C = (180 - Â) : 2 = (180 - 40) : 2 = 70 độ

Trần Thu Ha
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 12 2018 lúc 16:27

công trần hữu
Xem chi tiết
Phan Trần Bảo Ngọc
Xem chi tiết
Trần Kim Yến
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 14:52

Hình vẽ:

undefined

Akai Haruma
15 tháng 3 2021 lúc 14:54

Lời giải:
a) 

Theo định lý tổng 3 góc trong tam giác:

$\widehat{D}+\widehat{E}+\widehat{F}=180^0$

$\Rightarrow \widehat{E}+\widehat{F}=180^0-\widehat{D}=180^0-60^0=120^0$

Mà tam giác $DEF$ cân tại $D$ nên $\widehat{E}=\widehat{F}$

Do đó:

$\widehat{E}=\widehat{F}=\frac{120^0}{2}=60^0$

b) 

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)

$BM=CM$ (do $M là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)

Văn Phèn Tí
Xem chi tiết
oki pạn
28 tháng 1 2022 lúc 10:01

ABC cân tại A => góc C = góc B = 50 độ

góc C = 180-45-30=105

=> góc góc đỉnh C = 180 -105 =75 độ

Phí Văn Vượng
Xem chi tiết
Kinomoto Sakura
14 tháng 3 2021 lúc 15:16

Sửa đề: Tam giác ABC cân tại A, góc A bằng 100 độ. BC=8cm, AC=10cm. Phía ngoài tam giác ABC vẽ tam giác ABD cân tại D, góc ADB bằng 140 độ. Tính chu vi tam giác ABD.

Kinomoto Sakura
14 tháng 3 2021 lúc 15:18

undefined

Quang Lâm Lê
Xem chi tiết
T.Anh 2K7(siêu quậy)(тoá...
13 tháng 2 2020 lúc 10:49

Trên BC lấy E sao cho BD=BE,nối E với D,E với A

Ta có:\(\widehat{DBE}=\widehat{DBA}+\widehat{ABC}=\frac{180^0-140^0}{2}+\frac{180^0-100^0}{2}=20^0+40^0=60^0\)

Mà tam giác DBE có BD=BE nên tam giác DBE đều

Suy ra BD=DE=BE

Mà BD=AD nên BD=AD=DE=BE suy ra tam giác ADE cân tại D

\(\Rightarrow\widehat{DEA}=\widehat{DAE}=\frac{\left(180^0-\left(140^0-60^0\right)\right)}{2}=50^0\)

\(\Rightarrow\widehat{CEA}=180^0-\widehat{AED}-\widehat{DEB}=180^0-50^0-60^0=70^0\)

\(\Rightarrow\widehat{CAE}=180^0-\widehat{CEA}-\widehat{ACE}=180^0-70^0-40^0=70^0=\widehat{CEA}\)

Suy ra tam giác ACE cân tại C suy ra CA=CE. 

Khi đó ta có: \(BC=BE+EC=BD+AC\Rightarrow a=BD+b\Rightarrow BD=a-b\)

Chu vi tam giác ADB là AD+BD+AB=2.BD+AC=2.(a-b)+b=2a-2b+b=2a-b

Vậy chu vi tam giác ADB là 2a-b

Khách vãng lai đã xóa