C=(1-1/3)(1-1/6)(1-1/10)(1-1/15)....(1-1/210)
Tính giá trị biểu thức: C=(1-1/3)(1-1/6)(1-1/10)(1-1/15)...(1-1/210)
tính S=(1-1/3)(1-1/6)(1-1/10)(1-1/15)......(1-1/210)
Mình tính đc kết quả 22 nhưng hơi khó hiểu mong mọi người giải dùm
tính (1 -1/3)(1-1/6)(1-1/10)(1-1/15)....(1-1/210)
đặt A=(1-1/3)........
Ta có A=\(\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}\cdot...\cdot\frac{209}{210}=\frac{4}{6}\cdot\frac{10}{12}\cdot\frac{18}{20}\cdot...\cdot\frac{418}{420}=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\frac{3\cdot6}{4\cdot5}\cdot...\cdot\frac{19\cdot22}{20\cdot21}\)
=\(\frac{1\cdot4\cdot2\cdot5\cdot3\cdot6\cdot...\cdot19\cdot22}{2\cdot3\cdot3\cdot4\cdot4\cdot5\cdot...\cdot20\cdot21}=\frac{\left(1\cdot2\cdot3\cdot...\cdot19\right)\cdot\left(4\cdot5\cdot6\cdot...\cdot22\right)}{\left(2\cdot3\cdot4\cdot...\cdot20\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot21\right)}\)
=\(\frac{1\cdot22}{20\cdot3}=\frac{11}{30}\)
Đặt \(A=\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
=>\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
=>\(A=\frac{2.2}{3.2}.\frac{5.2}{6.2}.\frac{9.2}{10.2}.\frac{14.2}{15.2}...\frac{209.2}{210.2}\)
=>\(A=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{418}{420}\)
=>\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{19.22}{20.21}\)
=>\(A=\frac{\left(1.4\right).\left(2.5\right).\left(3.6\right).\left(4.7\right)...\left(19.22\right)}{\left(2.3\right).\left(3.4\right).\left(4.5\right).\left(5.6\right)...\left(20.21\right)}\)
=>\(A=\frac{\left(1.2.3.4...19\right).\left(4.5.6.7...22\right)}{\left(2.3.4.5...20\right).\left(3.4.5.6...21\right)}\)
=>\(A=\frac{1.22}{20.3}\)
=>\(A=\frac{22}{60}=\frac{11}{30}\)
Vậy \(\left(1-\frac{1}{3}\right).\left(1-\frac{1}{6}\right).\left(1-\frac{1}{10}\right).\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)=\frac{11}{30}\)
Tính giá trị biểu thức
C = (1-\(\dfrac{1}{3}\))(1-\(\dfrac{1}{6}\))(1-\(\dfrac{1}{10}\))(1-\(\dfrac{1}{15}\)).....(1-\(\dfrac{1}{210}\))
B=[1-1/3]x[1-1/6]x[1-1/10]x[1-1/15]x...x[1-1/210]
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
\(C=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{209}{210}\)
\(C=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{418}{420}\)
\(C=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...\frac{19.22}{20.21}\)
\(C=\frac{1.4.2.5.3.6.4.7...19.22}{2.3.3.4.4.5.5.6...20.21}\)
\(C=\frac{\left(1.2.3.4...19\right).\left(4.5.6.7...22\right)}{\left(2.3.4.5...20\right).\left(3.4.5.6...21\right)}\)
\(C=\frac{1.22}{20.3}=\frac{1.11}{10.3}=\frac{11}{30}\)
\(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
C=\(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)\left(1-\dfrac{1}{15}\right).....\left(1-\dfrac{1}{210}\right)\)
Tính C
\(C=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{210}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{209}{210}\)
Tính nhanh biết \(C=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{210}\right)\)
C=2/3.5/6.9/10...209/210
C=4/6.10/12.18/20...418/420 là do nhân với 2
C=1.4/2.3.2.5/3.4.3.6/4.5...19.22/20.21
C=1.2.3....19/2.3.4...20.4.5.6...22/3.4.5...21
C=1/20.22/3
C=11/30
Dễ ấy mà hiểu chưa