\(C=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{210}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{209}{210}\)
\(C=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{210}\right)\)
\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\cdot\cdot\dfrac{209}{210}\)
Giải phương trình:
a)\(\dfrac{x-49}{50}\)+\(\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
b)\(\dfrac{x+14}{86}+\dfrac{x+15}{85}+\dfrac{x+16}{84}+\dfrac{x+17}{83}+\dfrac{x+116}{4}=0\)
c)\(\dfrac{1}{\left(x^2+5\right)\left(x^2+4\right)}+\dfrac{1}{\left(x^2+4\right)\left(x^2+3\right)}+\dfrac{1}{\left(x^2+3\right)\left(x^2+2\right)}+\dfrac{1}{\left(x^2+2\right)\left(x^2+1\right)}=-1\)
1Tìm x,biết :
\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+....+\left|x+\dfrac{1}{210}\right|=11x\)
2.Tìm số tự nhiên có 3 chữ số , biết rằng số đó là bội của 18 và các chữ số của nó tỉ lệ theo 1:2:3
3.Tìm tất cả các số tự nhiên a,b sao cho: \(2^a+37=\left|b-45\right|+b-45\)
Help me !
Giải phương trình:
a. \(\dfrac{x-5}{x-5}+\dfrac{x-6}{x-5}+\dfrac{x-7}{x-5}+...+\dfrac{1}{x-5}=4\) \(x\in N\)
b. \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+...+\dfrac{1}{x^2+15x+50}=\dfrac{1}{14}\)
c. \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left[1+\dfrac{1}{x\left(x+2\right)}\right]=\dfrac{31}{16}\left(x\in N\right)\)
Rút gọn:
A=\(\dfrac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+2\left(\dfrac{1}{x-y}+\dfrac{1}{y-z}+\dfrac{1}{z-x}\right)\)
Giải phương trình \(\left(x+1\right)^2\left(1+\dfrac{2}{x}\right)^2+\left(1+\dfrac{1}{x}\right)^2=8\left(1+\dfrac{2}{x}\right)^2\)
Giải và biện luận phương trình sau:
\(\dfrac{1}{\left(x+a\right)^2-1}+\dfrac{1}{\left(x+1\right)^2-a^2}+\dfrac{1}{x^2-\left(a+1\right)^2}+\dfrac{1}{x^2-\left(a-1\right)^2}\)
Giải phương trình :
\(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\left(\dfrac{x^2-4}{x^2-1}\right)=0\)
Giải phương trình:
\(\dfrac{\left(x-a\right)\cdot\left(x-c\right)}{\left(b-a\right)\cdot\left(b-c\right)}+\dfrac{\left(x-b\right)\cdot\left(x-c\right)}{\left(a-b\right)\cdot\left(a-c\right)}=1\)
a, b. c là hằng số và khác nhau đôi một
Cho x+y=1 \(\left(x,y\ne0\right)\)
chứng minh: \(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{z\left(x-y\right)}{x^2y^2+3}\ne0\)