Giải phương trình:
a. \(\dfrac{x-5}{x-5}+\dfrac{x-6}{x-5}+\dfrac{x-7}{x-5}+...+\dfrac{1}{x-5}=4\) \(x\in N\)
b. \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+...+\dfrac{1}{x^2+15x+50}=\dfrac{1}{14}\)
c. \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left[1+\dfrac{1}{x\left(x+2\right)}\right]=\dfrac{31}{16}\left(x\in N\right)\)