x mũ 2 (x - 3) - 4x + 12
bài 1; phân tích đa thức sau thành hân tử
b, x mũ 2 + 4x + 3
b, x mũ 2 - 8x + 15
b, x mũ 2 + 2x - 8
b,x mũ 2 - x - 12
b, 4x mũ 2 + 4x - 3
bấm máy tính là ra đó :VV
b, x mũ 2 + 4x + 3 = ( x+ 1 ) ( x + 3 )
a) = x2 + 3x + x + 3 = x( x + 3 ) + ( x + 3 ) = ( x + 3 )( x + 1 )
b) = x2 - 3x - 5x + 15 = x( x - 3 ) - 5( x - 3 ) = ( x - 3 )( x - 5 )
c) = x2 - 2x + 4x - 8 = x( x - 2 ) + 4( x - 2 ) = ( x - 2 )( x + 4 )
d) = x2 - 4x + 3x - 12 = x( x - 4 ) + 3( x - 4 ) = ( x - 4 )( x + 3 )
e) = 4x2 - 2x + 6x - 3 = 2x( 2x - 1 ) + 3( 2x - 1 ) = ( 2x - 1 )( 2x + 3 )
( x mũ 2 + x ) mũ 2 + 4x mũ 2 + 4x - 12
\(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
Tìm x , y biết
a ) x mũ 2 = x mũ 5
b ) ( 3x - 12 )mũ 15 = ( x - 17)mũ 15
c ) ( 4x - 16 )mũ 15 - ( x - 2 )mũ 15 = 0
d ) ( x - 3 )mũ 11 = ( 2x - 6 )mũ 11
bạn có thể check lại đề bài câu a được không ạ
x mũ 4 + 2x mũ 3 + 5x mũ 2 + 4x - 12
x4 + 2x3 + 5x2 + 4x - 12
= x4 + x3 + x3 + 6x2 + x2 - 2x2 + 6x - 2x - 12
= ( x4 + x3 + 6x2 ) + ( x3 + x2 + 6x ) - ( 2x2 + 2x + 12 )
= x2( x2 + x + 6 ) + x( x2 + x + 6 ) - 2( x2 + x + 6 )
= ( x2 + x + 6 )( x2 + x - 2 )
= ( x2 + x + 6 )( x2 - x + 2x - 2 )
= ( x2 + x + 6 )[ x( x - 1 ) + 2( x - 1 ) ]
= ( x2 + x + 6 )( x - 1 )( x + 2 )
phân tích đa thức sau bằng phương pháp thêm bớt hạng tử
1, x mũ 2 + 2x - 3
2, x mũ 2 + 3x - 10
3, x mũ 2 - x - 12
4, 3x mũ 2 - 7 + 4x
5, 4x mũ 2 - 9y mũ 2 - 5xy
6, x mũ 2 - 2x - 4y mũ 2 - 4y
1, \(x^2+2x-3=x^2+3x-x-3=x\left(x-1\right)+3\left(x-1\right)=\left(x+3\right)\left(x-1\right)\)
2, \(x^2+3x-10=x^2+5x-2x-10=x\left(x-2\right)+5\left(x-2\right)=\left(x+5\right)\left(x-2\right)\)
3, \(x^2-x-12=x^2-4x+3x-12=x\left(x+3\right)-4\left(x+3\right)=\left(x-4\right)\left(x+3\right)\)
4, \(3x^2+4x-7=3x^2+7x-3x-7=3x\left(x-1\right)+7\left(x-1\right)=\left(3x+7\right)\left(x-1\right)\)
5, \(4x^2-9y^2-5xy=4x^2-9xy+4xy-9y^2\)
\(=4x\left(x+y\right)-9y\left(x+y\right)=\left(4x-9y\right)\left(x+y\right)\)
6, \(x^2-2x-4y^2-4y=x^2-2x+1-4y^2-4y-1=\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\left(x-1-2y-1\right)\left(x-1+2y+1\right)=\left(x-2y-2\right)\left(x+2y\right)\)
Phân tích đa thức thành nhân tử:
a,4x mũ 3 - 5x mũ 2 + 6x + 9
b,5x mũ 3 - 12x mũ 2 + 14x - 4x
c,x mũ 3 - 5x mũ 2 + 2x + 8
d,4x mũ 3 + 5x mũ 2 + 10x - 12
Câu a : \(4x^3-5x^2+6x+9\)
\(=4x^3+3x^2-8x^2-6x+12x+9\)
\(=\left(4x^3+3x^2\right)-\left(8x^2+6x\right)+\left(12x+9\right)\)
\(=x^2\left(4x+3\right)-2x\left(4x+3\right)+3\left(4x+3\right)\)
\(=\left(4x+3\right)\left(x^2-2x+3\right)\)
Câu b : \(5x^3-12x^2+14x-4\)
\(=5x^3-10x^2-2x^2+10x+4x-4\)
\(=\left(5x^3-2x^2\right)-\left(10x^2-4x\right)+\left(10x-4\right)\)
\(=x^2\left(5x-2\right)-2x\left(5x-2\right)+2\left(5x-2\right)\)
\(=\left(5x-2\right)\left(x^2-2x+2\right)\)
Câu c : \(x^3-5x^2+2x+8\)
\(=x^3+x^2-6x^2-6x+8x+8\)
\(=\left(x^3+x^2\right)-\left(6x^2+6x\right)+\left(8x+8\right)\)
\(=x^2\left(x+1\right)-6x\left(x+1\right)+8\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+8\right)\)
\(=\left(x+1\right)\left[x^2-2x-4x+8\right]\)
\(=\left(x+1\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x-4\right)\)
Câu d : \(4x^3+5x^2+10x-12\)
\(=4x^3+8x^2-3x^2+16x-6x-12\)
\(=\left(4x^3-3x^2\right)+\left(8x^2-6x\right)+\left(16x-12\right)\)
\(=x^2\left(4x-3\right)+2x\left(4x-3\right)+4\left(4x-3\right)\)
\(=\left(4x-3\right)\left(x^2+2x+4\right)\)
tìm nghiệm các đa thức sau
e(x)=(4x-12).(X mũ 2+1
f(x)=y mũ 4+8
g(x)=x mũ 2+x
k(x)=x mũ 2-2x+1
m(X)=x mũ 3-4x
h(x)=x mũ -25x
l(x)=X mux3+3x
n(x)=x mũ 2+3x-4
giúp mik cần gấp
1.Lm phép chia:
(9 mũ 30 - 27 mũ 19) : 3 mũ 57 + (125 mũ 9 - 25 mũ 12) : 5 mũ 24
2.Tìm x:
a,x mũ 2 - 25 - (x+5) = 0
b,(2x - 1)mũ 2 - (4x mũ 2 - 1) = 0
c,x mũ 2(x mũ 2 + 4) - x mũ 2 - 4 = 0
Bài 2:
a: \(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
=>(x+5)(x-6)=0
=>x=-5 hoặc x=6
b: \(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
=>-4x+2=0
hay x=1/2
c: \(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
x mũ 2 -4x căn 3 +12=0
\(x^2-4x\sqrt{3}+12=0\Leftrightarrow x^2-2\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2=0\)\(\Leftrightarrow\left(x-2\sqrt{3}\right)^2=0\Leftrightarrow x=2\sqrt{3}\)