Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vân An
Xem chi tiết
Đặng Nguyễn Ngọc Thương
Xem chi tiết
Huỳnh Cẩm
Xem chi tiết
Đinh Thùy Linh
29 tháng 6 2016 lúc 23:40

Câu hỏi của Huỳnh Cẩm - Toán lớp 9 - Học toán với OnlineMath

Võ Phương Linh
Xem chi tiết
Phượng Dương Thị
Xem chi tiết
Lê Song Phương
6 tháng 7 2023 lúc 20:28

 Bài này chỉ tìm được GTLN thôi nhé bạn.

 Ta thấy \(A=-\dfrac{1}{3}x^2+2x\) 

\(A=-\dfrac{1}{3}\left(x^2-6x\right)\)

\(A=-\dfrac{1}{3}\left(x^2-6x+9\right)+3\)

\(A=-\dfrac{1}{3}\left(x-3\right)^2+3\)

 Vì \(\left(x-3\right)^2\ge0\) nên \(A\le3\) (dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)). Như vậy GTLN của A là 3, đạt được khi \(x=3\).

Nguyễn Võ Thảo Vy
Xem chi tiết
Dương Lam Hàng
17 tháng 1 2018 lúc 15:11

Ta có: \(M=\frac{x^2+2x+3}{x^2+2}=\frac{2.\left(x^2+2\right)-\left(x^2-2x+1\right)}{x^2+2}\)

                                                  \(=\frac{2.\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy Mmax = 2 khi x = 1

Hoàng Như Trâm
Xem chi tiết
Nguyễn Triệu Khả Nhi
28 tháng 10 2017 lúc 10:32

A=-(x2+2x-3)

A=-[(x)2+2(x)(1)+(1)2-1-3]

A=-[(x+1)2-4]

A=-(x-1)2-4

Ta có:\(\left(x-1\right)^2\ge0\forall x\)

\(\left(=\right)-\left(x-1\right)^2\le0\)

\(\left(=\right)-\left(x-1\right)^2-4\le-4\)

\(\left(=\right)A\le-4\)

Dấu"="xảy ra khi:

(x-1)2=0

(=)x-1=0

(=)x=1

Vậy GTLN của A là -4 khi x=1

Nguyễn Hải Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 14:06

c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)

Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)

Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)

marie
Xem chi tiết
luuthianhhuyen
18 tháng 11 2018 lúc 11:58

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Krito Sword Art Online
Xem chi tiết