Giải hpt :
\(\hept{\begin{cases}x^3-3x^2+2x-5=y\\y^3+3y^2-2y-5=z\\z^3+3z^2+2z-3=x\end{cases}}\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x-3z^2x-3z+z^3=0\\y-3x^2y-3x+x^3=0\\z-3y^2z-3y+y^3=0\end{cases}}\)
\(\hept{\begin{cases}x+2y+3z=11\\3x+y+2z=3\\2x+3y+z=-2\end{cases}}\)
Giải hệ phương trình :
a) \(\hept{\begin{cases}x^2+y^2=1\\x^9+y^9=1\end{cases}}\)
b)\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2014\\\frac{1}{3x+2y}+\frac{1}{3y+2z}+\frac{1}{3z+2x}=\frac{1}{x+2y+3z}+\frac{1}{y+2x+3x}+\frac{1}{z+2x+3y}\end{cases}}\)
google xin tài trợ chương trình
có google thôi anh
Giải các phương trình sau:
a)\(\hept{\begin{cases}x+y+xy=8\\y+z+yz=15\\z+x+zx=35\end{cases}}\)
b)\(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)
c) \(\hept{\begin{cases}x^3+\frac{1}{3}y=x^2+x-\frac{4}{3}\\y^3-\frac{1}{4}z=y^2+y-\frac{5}{4}\\z^3+\frac{1}{5}x=z^2+z-\frac{6}{5}\end{cases}}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Ai giỏi toán giải giúp mình mấy hệ phương trình
1.\(\hept{\begin{cases}\left|x-1\right|-\left|y-5\right|=1\\y=5+\left|x-1\right|\end{cases}}\)
2.\(\hept{\begin{cases}2x^3+3yx^2=5\\y^3+6xy^2=7\end{cases}}\)
3.\(\hept{\begin{cases}x-1=\left|2y-1\right|\\y-1=\left|2z-1\right|\\z-1=\left|2x-1\right|\end{cases}}\)
4.\(\hept{\begin{cases}x^2+xy+y^2=7\\y^2+yz+z^2=28\\x^2+xz+z^2=7\end{cases}}\)
5.\(\hept{\begin{cases}\left|x-1\right|+y=0\\x+3y-3=0\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=3\\xy+3x^2=4\end{cases}}\)
giải hệ phương trình:\(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
tìm x,y,z thỏa \(\hept{\begin{cases}x^3-3x-2=2-y\\y^3-3y-2=4-2z\\z^3-3z-2=6-3x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2\left(x-2\right)=2-y\\\left(y+1\right)^2\left(y-2\right)=2\left(2-z\right)\\\left(z+1\right)^2\left(z-2\right)=3\left(2-x\right)\end{cases}}\)
nhân từng vế của pt , ta có \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2\left(x-2\right)\left(y-2\right)\left(z-2\right)=6\left(2-x\right)\left(2-y\right)\left(2-z\right)\)
\(\Leftrightarrow\left[\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2+6\right]\left(x-2\right)\left(y-2\right)\left(z-2\right)=0\)
đến đây thì dễ rồi, sẽ => x=2, hoặc y=2 hoặc z=2, thay vao rồi giải nhé