Cho 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) . Tìm giá trị nhỏ nhất của biểu thức:
\(Q=\frac{a+2017c}{a-c}+\frac{b+2017c}{b-c}\)
Cho a,b,c là 3 số thực dương thỏa mãn\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) . Tìm giá trị nhỏ nhất của biểu thức:
\(Q=\frac{a+2017c}{a-c}+\frac{b+2017c}{b-c}\)
Cho a,b,c là 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{a+2017c}{a-c}+\frac{b+2017c}{b-c}\)
Cho các số thực dương a,b,c thỏa mãn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
Tính giá trị biểu thức P=\(\frac{4a+6b+2017c}{4a-6b+2017c}\)
bài này nói lại 1 lần k đến lớp 9 tầm lớp 7 nhé!
vì \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
áp dụng tc dãy tỉ số = nhau
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
=> a=b=c
thay b=a ; c=a
=>bt P= \(\frac{4a+6a+2017a}{4a-6a-2017a}\)
đến đây tự làm típ!
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức: \(M=\frac{2020a-2018b}{c+d}-\frac{2019b+2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức: \(M=\frac{2020a-2018b}{c+d}-\frac{2019b+2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
Cho a, b, c, d là các số dương thỏa mãn \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)
Tính giá trị biểu thức:
\(M=\frac{2020a-2018b}{c+d}-\frac{2019b-2017c}{a+d}+\frac{2017c-2019d}{a+b}-\frac{2018d+2020a}{b+c}\)
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=3.Tìm giá trị nhỏ nhất của biểu thức \(M=\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\)
Cho các số thực dương a,b,c thỏa mãn điều kiện \(a+b+c\le\frac{3}{2}\).Tìm giá trị nhỏ nhất của biểu thức \(M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
tích mình đi
làm ơn
rùi mình
tích lại
thanks
Áp dụng BĐT bunhiacopxki ta có :\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
.Dấu "=" xảy ra khi :\(\frac{a}{\frac{1}{a}}=\frac{b}{\frac{1}{b}}=\frac{c}{\frac{1}{c}}\Leftrightarrow a^2=b^2=c^2\Leftrightarrow a=b=c\)
Mà \(a+b+c\le\frac{3}{2}\)\(\Rightarrow M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9:\frac{3}{2}=9.\frac{2}{3}=6\)
Vậy Min M = 6 <=> a = b = c
cho a,b,c là ba số thực dương thỏa mãn a+b+c=3. tìm giá trị nhỏ nhất của biểu thức M = \(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\)
Ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tụ ta có:
\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)
Từ (1), (2), (3) ta có:
\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(=3+3-\frac{ab+bc+ca+3}{2}\)
\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)