Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Dương Thị Yến  	Nhi A
28 tháng 3 2020 lúc 20:57

m khác 0 

Khách vãng lai đã xóa
nguyen huong giang
Xem chi tiết
Trần Quốc Đạt
22 tháng 1 2017 lúc 20:51

Mọi việc quy về giải hệ.

Từ pt đầu nhận thấy \(m\ne0\) nên chia hai vế cho \(m\) được: \(x+2y=\frac{m+1}{m}\).

Lấy pt dưới trừ pt trên được: \(\left(m-1\right)y=2-\frac{m+1}{m}\)

Nếu \(m=1\) thì pt có nghiệm tùy ý: \(\hept{\begin{cases}y\in R\\x=2-2y\end{cases}}\).

Nếu \(m\ne1\) thì \(y=\left(2-\frac{m+1}{m}\right):\left(m-1\right)=\frac{1}{m}\).

Còn \(x=2-\left(m+1\right)y=\frac{m-1}{m}\).

-----

Câu 1: Ta chỉ xét \(m\ne1\). Nhận thấy \(x+y=\frac{m-1+1}{m}=1\) nên điểm \(M\) thuộc đường thẳng \(x+y=1\).

Câu 2: \(M\) thuộc góc phần tư thứ nhất khi \(x,y\ge0\). Giải được \(m\ge1\).

Câu 3: Định lí Pythagore: \(OM^2=x^2+y^2\). Tới đây tự giải.

Mỹ Nguyễn ngọc
Xem chi tiết
you know
Xem chi tiết
you know
20 tháng 7 2018 lúc 18:38

Help me!♥♥!

you know
23 tháng 7 2018 lúc 10:54

từ hệ pt tinh x,y theo m là ra

Kiyotaka Ayanokoji
16 tháng 7 2020 lúc 20:44

Trả lời:

\(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\)    \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-\left(m-mx\right)=3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}mx+x-m+mx=3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}2mx+x=m+3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}x.\left(2m+1\right)=m+3\left(3\right)\\y=m-mx\end{cases}}\)

Để hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\)(3) có nghiệm duy nhất 

                                                                  \(\Leftrightarrow2m+1\ne0\)

                                                                 \(\Leftrightarrow m\ne\frac{-1}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{m+3}{2m+1}\\y=\frac{m^2+m-3}{2m+1}\end{cases}}\)

Ta có: \(x+y>0\)

\(\Leftrightarrow\frac{m+3}{2m+1}+\frac{m^2+m-3}{2m+1}>0\)

\(\Leftrightarrow\frac{m^2+2m}{2m+1}>0\)

\(\Leftrightarrow\frac{m.\left(m+2\right)}{2m+1}>0\)

\(\Rightarrow\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)\(\left(TM\right)\)

Vậy \(\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)thì hệ phương trrinhf có nghiệm duy nhất thỏa mãn \(x+y>0\)

Khách vãng lai đã xóa
~Miêu Nhi~
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Nguyễn Lê Nhật Linh
18 tháng 12 2016 lúc 20:47

\(m=1\)

Bùi thiện huy thịnh
11 tháng 5 2020 lúc 12:41

Đáp án

m=1

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
11 tháng 5 2020 lúc 14:05

m = 1 nha bạn

hok tốt

Khách vãng lai đã xóa
Lương Thùy Linh
Xem chi tiết
Thanh Tùng DZ
2 tháng 3 2020 lúc 16:49

\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))

\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)

Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)

\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)

Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)

Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)

Khách vãng lai đã xóa
Nguyễn Duyên
Xem chi tiết