cho hệ phương trình \(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
Xác định m để hệ phương trình có nghiệm duy nhất (x;y) và điểm M(x;y) thuộc đường tròn có tâm là gốc tọa độ và bán kính =\(\sqrt{5}\)
Tìm m để hệ phương trình có nghiệm duy nhất
\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
cho hệ phương trình\(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
1.chứng minh rằng hệ có nghiệm duy nhất (x,y) thì M(x,y) luôn thuộc 1 đường thẳng cố định khi m thay đổi
2.xác định m để M thuộc góc phần tư thứ nhất
3.xác định m để M thuộc (O,\(\sqrt{5}\))
Mọi việc quy về giải hệ.
Từ pt đầu nhận thấy \(m\ne0\) nên chia hai vế cho \(m\) được: \(x+2y=\frac{m+1}{m}\).
Lấy pt dưới trừ pt trên được: \(\left(m-1\right)y=2-\frac{m+1}{m}\)
Nếu \(m=1\) thì pt có nghiệm tùy ý: \(\hept{\begin{cases}y\in R\\x=2-2y\end{cases}}\).
Nếu \(m\ne1\) thì \(y=\left(2-\frac{m+1}{m}\right):\left(m-1\right)=\frac{1}{m}\).
Còn \(x=2-\left(m+1\right)y=\frac{m-1}{m}\).
-----
Câu 1: Ta chỉ xét \(m\ne1\). Nhận thấy \(x+y=\frac{m-1+1}{m}=1\) nên điểm \(M\) thuộc đường thẳng \(x+y=1\).
Câu 2: \(M\) thuộc góc phần tư thứ nhất khi \(x,y\ge0\). Giải được \(m\ge1\).
Câu 3: Định lí Pythagore: \(OM^2=x^2+y^2\). Tới đây tự giải.
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
Cho hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\)
Tìm m để hệ phương trình có nghiệm duy nhât thỏa mãn x+y>0
Trả lời:
\(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-\left(m-mx\right)=3\\y=m-mx\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+x-m+mx=3\\y=m-mx\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2mx+x=m+3\\y=m-mx\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x.\left(2m+1\right)=m+3\left(3\right)\\y=m-mx\end{cases}}\)
Để hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\)(3) có nghiệm duy nhất
\(\Leftrightarrow2m+1\ne0\)
\(\Leftrightarrow m\ne\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{m+3}{2m+1}\\y=\frac{m^2+m-3}{2m+1}\end{cases}}\)
Ta có: \(x+y>0\)
\(\Leftrightarrow\frac{m+3}{2m+1}+\frac{m^2+m-3}{2m+1}>0\)
\(\Leftrightarrow\frac{m^2+2m}{2m+1}>0\)
\(\Leftrightarrow\frac{m.\left(m+2\right)}{2m+1}>0\)
\(\Rightarrow\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)\(\left(TM\right)\)
Vậy \(\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)thì hệ phương trrinhf có nghiệm duy nhất thỏa mãn \(x+y>0\)
Cho hệ phương trình \(\hept{\begin{cases}\left(m-3\right)x+2y=3\\mx-y=7\end{cases}}\)
a) tìm m để hệ phương trình có nghiệm duy nhất
b) tìm m để hệ phương trình vô nghiệm
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Cho hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x-mx=3m-1\\2x-y=m+5\end{cases}}\)
Tìm m để hệ có nghiệm duy nhất thỏa mãn x + y =0
m = 1 nha bạn
hok tốt
Cho hệ phương trình sau:\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\)
Tìm m để hệ phương trình có nghiệm duy nhất \(\left(x;y\right)\) thỏa mãn \(2x+y< 0\)
\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))
\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)
Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)
\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)
Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)
Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)
cho hệ phương trình \(\hept{\begin{cases}mx+2y+1\\3x+\left(m+1\right)y=-1\end{cases}}\)(m là tham số)
Tìm các giá trị nguyên của m để hệ phương trình có nghiệm duy nhất (x;y) sao cho x và y là các số nguyên.