Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
Tìm giá trị nhỏ nhất của biểu thức
P =\(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
Đặt \(x=b+c-a,y=a+c-b,z=a+b-c\) . Khi đó x,y,z >0 và \(a=\frac{y+z}{2},b=\frac{x+z}{2},c=\frac{x+y}{2}\)
Vậy \(P=\frac{2y+2z}{x}+\frac{9x+9z}{2y}+\frac{8x+8y}{z}=\left(\frac{2y}{x}+\frac{9x}{2y}\right)+\left(\frac{2z}{x}+\frac{8x}{z}\right)+\left(\frac{9z}{2y}+\frac{8y}{z}\right)\)
\(\ge2\sqrt{9}+2\sqrt{16}+2\sqrt{36}\). Dấu '=' xảy ra khi:
\(\hept{\begin{cases}\frac{2y}{x}=\frac{9x}{2y}\\\frac{2z}{x}=\frac{8x}{z}\\\frac{9z}{2y}=\frac{8y}{z}\end{cases}\Leftrightarrow\hept{\begin{cases}4y^2=9x^2\\2z^2=8x^2\\9z^2=8y^2\end{cases}}}\Leftrightarrow\hept{\begin{cases}x,y,z>0\\2x=z\\2y=3x;3z=4y\end{cases}}\)
Cho a, b, c là độ dài 3 cạnh của một tam giác. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{4a}{b+c-a}+\frac{9b}{c+a-b}+\frac{16c}{a+b-c}\)
tìm giá trị nhỏ nhất của
\(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
Cho a,b,c là ba cạnh của một tam giác
Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{4a}{b+c-a}\) + \(\frac{9b}{c+a-b}\)+ \(\frac{16c}{a+b-c}\)
Đặt: \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\Rightarrow x;y;z>0\text{ và }\hept{\begin{cases}a=y+z\\b=z+x\\c=x+y\end{cases}}\)
Áp dụng AM - GM, ta có:
\(2P=4\left(\frac{y+z}{x}\right)+9\left(\frac{x+z}{y}\right)+16\left(\frac{x+y}{z}\right)\)
\(=\left(4\frac{y}{x}+9\frac{x}{y}\right)+\left(4\frac{z}{x}+16\frac{x}{z}\right)+\left(9\frac{x}{y}+16\frac{x}{z}\right)\ge12+16+24=52\Rightarrow P\ge26\)
\(Đ\text{T}\Leftrightarrow3z=4y=6x\)
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{4a}{b+c-a}+\frac{9a}{a+c-b}+\frac{16c}{a+b-c}\)
cho các số thực fuwowng a,b,c thỏa mãn:a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
\(p=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
trái nghĩa với từ chắt chiu là gì
trái nghĩa với từ chắt chiu là gì .
Trái nghĩa với chắt chiu là phung phí
Tìm GTNN của P=\(\frac{4a}{b+c-a}+\frac{9b}{c+a-b}+\frac{16c}{a+b-c}\)biết a,b,c là ba cạnh của 1 tam giác
Ban nen cho phan khac chu khong phai phan giai tri
Cho a,b,c là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c}{4a}\)
\(P=\frac{a^2}{\left(a+b\right)^2}+\frac{b^2}{\left(b+c\right)^2}+\frac{c}{4a}\)
\(P=\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)}+\frac{c}{4a}\)
Ta đặt \(\frac{b}{a}=x;\frac{c}{b}=y\Rightarrow\frac{c}{a}=xy\)
\(P=\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{xy}{4}\)
Lại có \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)
Thật vậy, bđt trên tương đương với:
\(\left(xy+1\right)\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\ge\left(1+x\right)^2\left(1+y\right)^2\)
\(\Leftrightarrow\left(xy+1\right)\left(x^2+y^2+2x+2y+2\right)\ge\left(x^2+2x+1\right)\left(y^2+2y+1\right)\)
\(\Leftrightarrow x^2y+y^2x-x^2y^2-2xy+1\ge0\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)luôn đúng
Suy ra: \(P\ge\frac{1}{xy+1}+\frac{xy}{4}=\frac{1}{xy+1}+\frac{xy+1}{4}-\frac{1}{4}\)
\(P\ge2\sqrt{\frac{1}{xy+1}\frac{xy+1}{4}}-\frac{1}{4}\left(AM-GM\right)\)
\(=1-\frac{1}{4}=\frac{3}{4}\)
Đẳng thức xảy ra khi a=b=c=1
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó