Cho a, b, c là các số tự nhiên khác 0. Chứng minh rằng:1< a/a+b + b/b+c + c/c+a <2
Cho số tự nhiên A = a x b y c z trong đó a,b,c là các số nguyên tố đôi một khác nhau, còn x, y, z là các số tự nhiên khác 0. Chứng minh rằng số ước của A được tính bởi công thức: x + 1 y + 1 z + 1
cho a,b,c là các số tự nhiên khác 0 chứng minh rằng a/a+b + b/b+c + c/c+a
Cho số tự nhiên A = a x b y c z trong đó a,b,c là các số nguyên tố đôi một khác nhau, còn x, y, z là các số tự nhiên khác 0. Chứng minh rằng số ước của A được tính bởi công thức: (x+1)(y+1)(z+1)
Số ước của A chỉ chứa thừa số nguyên tố là x thừa số, chỉ chứa thừa số nguyên tố b là y thừa số, chỉ chứa thừa số nguyên tố c là z thừa số, chỉ chứa thừa số nguyên tố ab là xy thừa số, chỉ chứa thừa số nguyên tố ac là xz thừa số, chỉ chứa thừa số nguyên tố bc là yz thừa số, chỉ chứa thừa số nguyên tố abc là xyz thừa số. Vì A là ước của chính nó, do đó số ước của A bằng:
x+y+z+xy+yz+zx+xyz+1 = x(z+1)+y(z+1)+xy(z+1)+z+1 = (z+1)(x+y+xy+1)
= (z+1)[(x+1)+y(x+1)] = (z+1)(y+1)(x+1)
Cho a,b là các số tự nhiên khác 0 sao cho (a+1)/b+(b+1)/a là số tự nhiên. Gọi d= ƯCLN(a,b). chứng minh rằng a+b>=d^2
Đặt \(X=\frac{a+1}{b}+\frac{b+1}{a}=\frac{a^2+b^2+a+b}{ab}\)
Vì X là số tự nhiên => \(a^2+b^2+a+b⋮ab\)
Vì d=UCLN(a,b) => \(a⋮d\) và \(b⋮d\)=> \(ab⋮d^2\)
=> \(a^2+b^2+a+b⋮d^2\)
Lại vì \(a⋮d\) và \(b⋮d\) => \(a^2⋮d^2\) và \(b^2⋮d^2\) => \(a^2+b^2⋮d^2\)
=> \(a+b⋮d^2\)
=> \(a+b\ge d^2\) (đpcm)
Cho a , b , c, d là các số tự nhiên khác 0 . Chứng minh rằng số :
A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+a+d ko phải là số tự nhiên
cho các số tự nhiên a,b,c khác 0,sao cho a^b +c,b^c+a,c^a+b đều là các số nguyên tố. Chứng minh rằng 2 trong các số đã cho phải bằng nhau
Bài 1:
a) Cho C = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2015 + 4^2016 . Chứng minh C chia hết cho 21 và 105
b) Chứng minh rằng với mọi số tự nhiên khác 0 có số lượng các ước tự nhiên là một số lẻ thì số tự nhiên đó là số chính phương
Bài 1:
a) C = 4 + 42 + 43 + 44 + ... + 42015 + 42016
C = (4 + 42 + 43) + (44 + 45 + 46) + ... + (42014 + 42015 + 42016)
C = 4(1 + 4 + 42) + 44 ( 1 + 4 + 42) + ...+ 42014(1 + 4 + 42)
C = 4 . 21 + 44 . 21 + ... + 42014 . 21
C = 21(4 + 44 + ... + 42014) \(⋮\)21
=> C \(⋮\)21
C = 4 + 42 + 43 + 44 + 45 + ... + 42015 + 42016
C = (4 + 42 + 43 + 44 + 45 + 46) + ... + (42011 + 42012 + 42013 + 42014 + 42015 + 42016)
C = 4(1 + 4 + 42 + 43 + 44 + 45) + ... + 42011(1 + 4 + 42 + 43 + 44 + 45)
C = 4 . 1365 + 47 . 1365 + ... + 42011 . 1365
C = 1365(4 + 47 + ... + 42011)
mà 1365 \(⋮\)105
=> C \(⋮\)105
cho các số tự nhiên a,b,c,d đôi một khác nhau và khác 0 thỏa mãn a^2+d^2=b^2+c^=P. chứng minh rằng P là hợp số
Cho a,b,c là các số tự nhiên khác 0 và a+2.b+3.c chia hết cho 7. Chứng minh rằng: 17a+13b+9c chia hết cho 7