Cho hình thang ABCD (AB//CD). M∈AD, N∈BC sao cho AM/MD =CN/NB . MN cắt BD, AC lần lượt tại E và F. Qua M kẻ đường thẳng song song với AC cắt DC tại H. AC cắt BD tại O, HO cắt MN tại I. Chứng minh:
a) HN//BD.
b) IE=IF, ME=MF.
Cho hình thang ABCD (AB//CD). \(M\in AD,N\in BC\)sao cho \(\frac{AM}{MD}=\frac{CN}{NB}\). MN cắt BD, AC lần lượt tại E và F. Qua M kẻ đường thẳng // với AC cắ DC tại H. AC cắt BD tại O, HO cắt MN tại I. Chứng minh:
a) HN//BD.
b) IE=IF, ME=MF.
a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)
Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)
Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)
Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD
b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.
Trước hết, ta chứng minh GK//MN.
Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\)
Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)
Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)
Theo định lý Ta lét đảo, suy ra GK//MN.
Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành
Vậy thì J là trung điểm của EK.
Xét tam giác OGK có EF // GK nên ta có :
\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)
Ta cũng có GK//MN nên :
\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
Cho hình thang ABCD ( AB // CD ) , H thuộc cạnh CD . Qua H kẻ đường thẳng song song với AC, cắt BD, AD lần lượt tại I và M . Qua H kẻ tiếp đường thẳng song song BD, cắt AC, BC lần lượt tại M và N.
a) Chứng minh : IK // MN
b) Gọi E,F lần lượt là giao điểm của MN với BD và AC .Chứng minh : ME = NF
Giúp với mọi người hình mình tự vẽ
Cm bỪa 😎😎😎😂😝😆😝😂😂🏆🔮📢📣📣📣🎰🎼🎼
Cho hình thang ABCD (AB//CD), O là giao điểm của 2 đường chéo. Các điểm M, N trên AD, CB sao cho AM/MD=CN/NB.Gọi giao điểm của MN với BD và AC lần lượt là E và F. Đường thẳng qua M song song với AC cắt CD tại H.
a, CMR: HN//BD
b, Gọi giao điểm của HO và MN là I. CMR: IE=IF, ME=NF
Cho hình thang ABCD(BC//AD). M,N là 2 điểm trên AB,CD sao cho AM/AB=CN/CD. Đường thẳng MN cắt AC tại E. MN cắt BD tại F. Kẻ MI//BD(I thuộc AD).
a)C/m: IN//AC
b)IN cắt BD tại H, MI cắt AC tại K. C/m: KH//MN
BÀI1, Cho hình thang ABCD(AB//CD) đường thẳng song song với AB cắt AD, BD, AC, BC lần lượt tại M, N, E, F. Chứng minh:MN=EF.
BÀI 2, Cho hình thang ABCD ( AB//CD) AC cắt BD tại O .Đường thẳng đi qua O // AB cắt AD và BC tại M, N. Chứng minh: OM=ON
Bài 2:
Xét ΔADC có OM//DC
nen OM/DC=AM/AD(1)
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC(2)
Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)
Từ (1) (2)và (3) suy ra OM=ON
Cho hình thang ABCD ( AB // CD ) , H thuộc cạnh CD . Qua H kẻ đường thẳng song song với AC, cắt BD, AD lần lượt tại I và M . Qua H kẻ tiếp đường thẳng song song BD, cắt AC, BC lần lượt tại M và N.
a) Chứng minh : IK // MN
b) Gọi E,F lần lượt là giao điểm của MN với BD và AC .Chứng minh : ME = NF
Cho hình thang ABCD, đáy AB. Từ đỉnh C, kẻ đường thẳng song song với AD, đường này cắt BD tại P và cắt AB tại E. Qua D, kẻ đường thẳng song song với BC, đường này cắt AC tại N và AB tại F. Đường thẳng qua E, song song với AC cắt BC tại Q và đường thẳng qua F song song với BD cắt AD tại M
a, Chứng minh bốn điểm M,N,P,Q nằm trên 1 đường thẳng song song với hai đáy
b, Chứng minh: MN = PQ
c, Cho AB=a, CD=b. Chứng minh rằng các điểm M, N,P, Q theo thứ tự chia các đoạn thẳng AD, AC, BD, DC theo cùng 1 tỉ số k. Tính k theo a và b.
Cho hình thang ABCD(AB//CD). Các điểm M,N thuộc các cạnh AD,Bc sao cho AM/MD = CN/NB. Gọi các giao điểm của MN với BD và AC theo thưs tự là E,F. Qua M kẻ đường thẳng song song với AC cắt DC ở H.Gọi O là giao điểm của AC,BD.Gọi I là giao điểm của HO và MN.Chứng minh IE=Ì,ME=MF
https://olm.vn/hoi-dap/detail/93095064281.html
Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N. 1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1