Cho đường tròn(O) hai đường kính AB và CD vuông góc vs nhau lấy M trên cung nhỏ Bc kẻ dây CM // MB. CMR tam giác OMN vuông cân
Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M sao cho số đo cung MB bằng hai lần số đo cung MC. Gọi N là giao điểm của AM và CD a) chứng minh ∆OMN cân b) chứng minh AM.AN = AO.AB
b: Xét ΔAON vuông tại O và ΔAMB vuông tại M co
góc OAN chung
=>ΔAON đồng dạngvới ΔAMB
=>AO/AM=AN/AB
=>AO*AB=AM*AN
cho (o) đường kính AB vẽ dây cung CD vuông góc với AB tại I(I giữa A và O) lấy M trên cung nhỏ BC Am cắt CD tại N chứng minh tân đường tròn ngoại tiếp tam giác CMN thuộc đường thẳn BC
BÀI 1 cho nửa đường tròn tâm o đường kính AB CD là dây bất kì khác AB kẻ AE và BF vuông góc với CD chứng minh CE=DF
BÀI 2 cho nữa đường tròn O đường kính AB trên AB lấy hai điểm C và D sao cho OC=OD .từ C và D kẻ hai tia song song nhau cắt nửa đường tròn tại E và F chứng minh EF vuông góc với CE và DF
Bài 3 cho đường tròn o có bán kính OA =11 cm điểm M thuộc OA và cách o là 7 cm qua M kẻ dây CD có độ dài 18 cm tính độ dài MC, MD
Bài 4 cho tam giác ABC cân nội tiếp đường tròn O
A chừng minh AO là đường trung trực của BC
B tính đường cao AH của tam giác ABC biết AC=40cm bán kình đường tròn O = 25 cm
Bài 5 cho đường tròn O đường kính AB dây CD vuông góc AB tại điểm M ,M thuộc OA
gọi I là một điểm thuộc OB .Các tia CI ,DI theo thứ tự cắt dường tròn tại E và F
A Cm tam giác ICD cân
gọi H,K theo thứ tự là chân các đường vuông góc kẻ từ O đến CE DF so sánh OH và OK
giúp mình với mình cảm ơn nhiều
1/Cho đường tròn (O;k )và 2 đường kính AB, CD vuông góc với nhau. Gọi M là 1 điểm trên cung nhỏ BC .Dây MA cắt, CD tại E a) cm tứ giác oemb nội tiếp b) nếu mb=r CM tia BE là tia phân giác của MBA Tính độ dài dây am theo R Tính diện tích hình giới hạn bởi đây cùng nhỏ AM (Gọi là hình viên phân)
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:
A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định
b. MA^2+MB^2+MC^2+MD^2=4R^2
c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau
2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD
a,CM: Sahkb=Sacb+Sadb
b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ
3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat
5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ
7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.
nhờ các bạn ssieeu toán giải hộ mình với! thanks nhiều
Cho đường tròn (O) đường kính AB = 2R. Lấy điểm M nằm giữa hai điểm O và B, kẻ dây CD vuông góc với AB tại M. Gọi E là điểm trên cung nhỏ AC (E * A và E =C), N là giao điểm của BE và CD. 2) Chứng minh tam giác MNB đồng dạng với tam giác EAB và AC +BE.BN = 4R*. 3) Kẻ dây DK song song với dây BE. Chứng minh AK vuông góc với CE.
2: góc BEA=1/2*180=90 độ
Xét ΔBMN vuông tại M và ΔBEA vuông tại E có
góc MBN chung
=>ΔBMN đồng dạng với ΔBEA
=>BM/BE=BN/BA
=>BE*BN=BA*BM=BC^2
=>AC^2+BE*BN=AB^2=4*R^2
Cho đường tròn (O) đường kính AB, dây CD vuông góc với AB tại E (E nằm giữa A và O,E khác A và O). Lấy điểm M thuộc cung nhỏ BC sao cho cun MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K.
a, Chứng minh tứ giác BMFE nội tiếp
b, Chứng minh BF vuông góc với AK và EK.EF=EA.EB
c, Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK=IF
a: góc AMB=1/2*sđ cung AB=90 độ
góc FEB+góc FMB=180 độ
=>FMBE nội tiếp
b: Xét ΔKAB có
AM,KE là đường cao
KE cắt AM tại F
=>F là trực tâm
=>BF vuông góc AK
Cho đường tròn tâm O đường kính AB và CD vuông góc với nhau . Điểm M nằm trên cung nhỏ AC sao cho
MC < MA .
a) Chứng minh CMB = DMB
b) Từ C kẻ đường vuông góc với MB cắt MD tại E và cắt AB tại F . Chứng minh tam giác MCF vuông cân .Tính số đo góc DEC
c) Chứng minh tứ giác EFDB nội tiếp được một đường tròn .Xác định tâm của đường tròn ngoại tiếp tam giác DEC
Cho đường tròn tâm O và dây AB, điểm M di động trên cung lớn AB các đường cao AE,BF của tam giác ABM cắt nhau ở H vẽ đường tròn tâm H bán kính HM cắt MA,MB theo thứ tự tại E, D. CMR: ĐƯờng thẳng kẻ từ M vuông góc với CD luôn đi qua một điểm cố định