Tìm GTLN của Q=\(\frac{27-2x}{12-x}\)(với x nguyên)LN
Tìm GTLN của bt C =\(\frac{27-2x}{12-x}\)với x nguyên
Tìm các GT nguyên của x để các BT sau có GTLN
a.\(\frac{1}{7-x}\)
b.\(\frac{27-2x}{12-x}\)
Nhanh nha mn
1 tìm x,y\(\in\)Z thỏa mãn x+y=xy=2
2 tìm GTLN của Q=\(\frac{27-2x}{12-x}\)(x\(\in\)Z)
3 tìm p nguyên tố sao cho p+1,p+5 cùng là số nguyên tố
1.cho A= \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\). tìm số nguyên x để A có giá trị là số nguyên
2.Tìm GTLN cỉa các biểu thức sau
E= \(\frac{27-2x}{12-x}\); x\(\in\)Z
tìm x , để có gtln
a,\(\frac{27-2x}{12-x}\)
b.\(\frac{14-x}{4-x}\)
\(A=\frac{27-2x}{12-x}=\frac{24-2x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)
Câu b bạn tự làm nhé
Chúc bạn hok tốt :>
a, Tìm cặp số nguyên (x,y) thỏa mãn x + y + xy = 2
b, Tìm giá trị lớn nhất của biểu thức \(Q=\frac{27-2x}{12-x}\)
với x nguyên.
x + y + xy = 2
=> (x + xy) + (y + 1) = 3
=> (y + 1)(x + 1) = 3
=> [(x + 1),(y + 1)] = (1,3;3,1;-1,-3;-3,-1)
=> (x,y) = (0,2;0,2;-2,-4;-4,-2)
Tìm GTLN :
\(P=\frac{27-2x}{12-x}\)
ta có
\(P=\frac{27-2x}{12-x}\)
\(P=\frac{\left(12-x\right)+\left(12-x\right)+3}{12-x}\)
\(P=2+\frac{3}{12-x}\)
để P lớn nhất thì \(\frac{3}{12-x}\) phải lớn nhất
=> 12-x phải bé nhất (hay 12-x=1)
=> x=12
Bây giờ thay vào sẽ có kết quả là 5
=> P lớn nhất bằng 5
Tìm giá trị lớn nhất của biểu thức K=\(\frac{27-2x}{12-x}\) (với x nguyên )
a) Tìm cặp số nguyên ( x,y) thỏa mãn x+y+xy=2
b) Tìm giá trị lơn nhất biểu thức \(Q=\frac{27-2x}{12-x}\)( với x nguyên )
a)x+y+xy=2
=> x+xy+y=2
=>x(y+1)+y=2
=>x(y+1)+y+1=3
=>x(y+1)+(y+1)=3
=>(y+1)(x+1)=3
Đến đây thì dễ rồi, bạn tự tìm nốt nha
b) \(\frac{27-2x}{12-x}=\frac{24-2x+3}{12-x}=\frac{2.\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
Với x>12 thì \(\frac{3}{12-x}< 0\)
Với x<12 thì \(\frac{3}{12-x}.>0\)
Phân số \(\frac{3}{12-x}\) với x<12 có tử và mẫu đều dương, tử ko đổi nên mẫu phải nhỏ nhất
=>12-x=1
=>x=11