CHỨNG MINH RẰNG TỒN TẠI MỘT SỐ TỰ NHIÊN LÀ BỘI CỦA 31 GỒM TOÀN CHỮ SỐ 7
CHỨNG MINH RẰNG TỒN TẠI MỘT SỐ TỰ NHIÊN LÀ BỘI CỦA 31 GỒM TOÀN CHỮ SỐ 7
Xét 31 số
7
77
777
...
7777....7777
31 chữ số 7
Nếu có 1 trong 31 số chia hết cho 31 thì bài toán được chứng minh
Nếu ko có số nào chia hết cho 31 thì ta có:Mọi số tự nhiên ko chia hết cho 31 thì có 30 trường hợp dư là 1;2;3;4;...;30 có 30 trường hợp
Mà số 31 số nên theo nguyên lý Đi rích-lê thì có ít nhất 2 số có cùng số dư khi chia cho 31
Gọi 2 số đó là:77777.....77777 77777............77777 \(\left(1\le n< m\le31\right)\)
n chữ số m chữ số
\(\Rightarrow777...7777-7777....777⋮31\)
m chữ số n chữ số
\(\Rightarrow777.....777.10^n⋮31\)
m-n chữ số
Mà (10^n,31)=1
\(\Rightarrow7777.....77777⋮31\)
m-n chứ số
Ró ràng m-n>0 vì m>n
Suy ra điều phải chứng minh
A/ tìm số tự nhiên x biết trong 3 số 55,15 và x thì tích cảu bất kì hai số nào cũng chia hết cho các số còn lại ?
B/ chứng minh rằng tồn tại một bội của 11 gồm toàn chữ số 7 ?
Chứng minh rằng tồn tại một bội của 23 gồm toàn các chữ số 4
Cho A là một số lẻ không tận cùng bằng 5. Chứng minh rằng tồn tại một bội của A gồm toàn chữ số 9.
Xét 1 A , mẫu A không chứa thừa số nguyên tố 2 và 5 nên 1 A viết được dưới dạng số thập phân vô hạn tuần hoàn đơn.
1 A = a 1 a 2 ... a n ¯ 99...9 ⏟ n ⇒ 99...9 ⏟ n = A . a 1 a 2 ... a n ¯ ⇒ 99...9 ⏟ n ⋮ A .
bạn lấy đâu 1/A người ta cho A thôi mà
chứng minh rằng tồn tại một bội của 13 gồm toàn chữ số 2
Xét các số:
2,22 , 222,..., 2222...222
14 chữ số 2
1 số tự nhiên khi chia cho 13 sẽ có thể có các số dư là 0,1, 2, 3,..., 12 ( 13 số dư ) mà dãy trên có 14 số nên theo nguyên lí Diricle sẽ có ít nhất 2 số có cùng số dư khi chia cho 13
Giả sử 2 số đó là
222...22 và 222...22
m chữ số 2 n chữ số 2 ( m, n thuộc N*, 0<m<n \(\le\)20 )
=> 222...22 \(_-\)222...22 \(⋮\)13
n chữ số 2 m chữ số 2
<=> 222...222 000....00 \(⋮\) 13
n-m chữ số 2 m chữ số 0
<=> 222..222 x 10m \(⋮\)13
n-m chữ số 2
Mà ( 10m, 13 ) = 1
=> 222....2222 \(⋮\)13
n-m chữ số 2
Vậy tồn tại 1 số tự nhiên gồm toàn chữ số 2 là bội của 13.
Hok tốt
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Chứng minh rằng tồn tại một bội của 13 gồm toàn chữ số 2.
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.
Chứng minh rằng tồn tại một bội của 23 gồm toàn chữ số bốn
Chứng minh rằng tồn tại một bội của 23 gồm toàn chữ số bốn
Cho A là số lẻ không tận cùng bằng 5. Chứng minh rằng tồn tại một bội của A gồm toàn chữ số 9