Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thành Đạt
Xem chi tiết
Võ Đông Anh Tuấn
12 tháng 11 2016 lúc 9:45

ĐKXĐ : \(a\ne\pm b.\)

Biến đổi pt : \(\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)=-2ab\)

\(\Leftrightarrow ax-bx-a^2+ab+ax+bx-ab-b^2=-2ab\)

\(\Leftrightarrow2ax=a^2+b^2-2ab\)

\(\Leftrightarrow2ax\left(a-b\right)^2\) \(\left(1\right)\)

Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)

Nếu \(a=0\) thì \(\left(1\right)\) có dạng \(0x=b^2.\) Do \(a\ne b\) nên \(b\ne0\) , pt vô nghiệm .

Vậy \(a\ne0,a\ne\pm b\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)

Còn lại , \(S=\varnothing\)

 

 

KHANH QUYNH MAI PHAM
Xem chi tiết
I don
5 tháng 7 2019 lúc 22:01

\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}.\)

\(\Rightarrow\frac{ax-bx-a^2+ab+ax+bx-ba-b^2}{\left(a+b\right).\left(a-b\right)}=\frac{-2ab}{\left(a+b\right).\left(a-b\right)}\)

\(\Rightarrow2ax=a^2-2ab+b^2\)

=> 2ax = (a-b)2

nếu a=0; \(b\ne0\)

=> \(x\in\varnothing\)

nếu a=0, b=0

=> \(x\in R\)

nếu \(a\ne0;b=0\)

=> x = a/2

Khá Bảnh
Xem chi tiết
Đức Lộc
12 tháng 4 2019 lúc 19:18

Điều kiện xác định của phương trình: \(a\ne\pm b\)

Biến đổi phương trình:

(x - a)(a - b) + (x - b)(a + b) = - 2ab

<=> ax - bx - a2 + ab + ax + bx - ab - b2 = - 2ab

<=> 2ax = a2 + b2 - 2ab

<=> 2ax = (a - b)2               (1)

Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)

Nếu a = 0 thì (1) có dạng 0x = b2. Do \(a\ne b\) nên \(b\ne0\)nên phương trình vô nghiệm.

Kết luận:

Nếu \(\hept{\begin{cases}a\ne b\\a\ne\pm b\end{cases}}\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)

Còn lại, \(S=\varnothing\)

lipphangphangxi nguyen k...
Xem chi tiết
Nguyen Bao Linh
Xem chi tiết
No ri do
1 tháng 2 2017 lúc 21:07

\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\) (ĐKXĐ: a\(\pm\)b)

\(\Leftrightarrow\frac{\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)}{a^2-b^2}=\frac{-2ab}{a^2-b^2}\)

\(\Leftrightarrow\frac{-a^2+xa-xb+ab-b^2+xa+xb-ab+2ab}{a^2-b^2}=0\)

\(\Leftrightarrow-\left(a-b\right)^2+2xa=0\)

\(\Leftrightarrow x=\frac{\left(a-b\right)^2}{2a}\)

Vậy phương trình có nghiệm \(x=\frac{\left(a-b\right)^2}{2a}\)

Nguyen Bao Linh
2 tháng 2 2017 lúc 14:22

Giải

Điều kiện xác định của phương trình : \(a\ne\pm b\)

Biến đổi phương trình:

\(\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)=-2ab\)

\(\Leftrightarrow ax-bx-a^2+ab+ax+bx-ab-b^2=-2ab\)

\(\Leftrightarrow2ax=a^2+b^2-2ab\)

\(\Leftrightarrow2ax=\left(a-b\right)^2\)

Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)

Nếu a = 0 thì \(2ax=\left(a-b\right)^2\) có dạng \(0x=b^2\). Do \(a\ne b\) nên \(b\ne0\), phương trình vô nghiệm

Kết luận

Nếu \(a\ne0\), \(a\ne\pm b\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)

Còn lại, \(S=\varnothing\)

Nguyen Bao Linh
3 tháng 2 2017 lúc 17:37

không có giá trị nào thỏa mãn

mạc trần
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
truong thi thuy linh
Xem chi tiết
Nguyễn Anh Dũng An
Xem chi tiết
kudo shinichi
17 tháng 12 2018 lúc 16:47

ĐK: a;b>0

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)

                                                                                             đpcm