\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\)
Giai pt : \(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\) ( a và b là hằng )
ĐKXĐ : \(a\ne\pm b.\)
Biến đổi pt : \(\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)=-2ab\)
\(\Leftrightarrow ax-bx-a^2+ab+ax+bx-ab-b^2=-2ab\)
\(\Leftrightarrow2ax=a^2+b^2-2ab\)
\(\Leftrightarrow2ax\left(a-b\right)^2\) \(\left(1\right)\)
Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)
Nếu \(a=0\) thì \(\left(1\right)\) có dạng \(0x=b^2.\) Do \(a\ne b\) nên \(b\ne0\) , pt vô nghiệm .
Vậy \(a\ne0,a\ne\pm b\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)
Còn lại , \(S=\varnothing\)
Giải phương trình
\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\)
\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}.\)
\(\Rightarrow\frac{ax-bx-a^2+ab+ax+bx-ba-b^2}{\left(a+b\right).\left(a-b\right)}=\frac{-2ab}{\left(a+b\right).\left(a-b\right)}\)
\(\Rightarrow2ax=a^2-2ab+b^2\)
=> 2ax = (a-b)2
nếu a=0; \(b\ne0\)
=> \(x\in\varnothing\)
nếu a=0, b=0
=> \(x\in R\)
nếu \(a\ne0;b=0\)
=> x = a/2
Giải phương trình:
\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\) (a và b là hằng).
Điều kiện xác định của phương trình: \(a\ne\pm b\)
Biến đổi phương trình:
(x - a)(a - b) + (x - b)(a + b) = - 2ab
<=> ax - bx - a2 + ab + ax + bx - ab - b2 = - 2ab
<=> 2ax = a2 + b2 - 2ab
<=> 2ax = (a - b)2 (1)
Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)
Nếu a = 0 thì (1) có dạng 0x = b2. Do \(a\ne b\) nên \(b\ne0\)nên phương trình vô nghiệm.
Kết luận:
Nếu \(\hept{\begin{cases}a\ne b\\a\ne\pm b\end{cases}}\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)
Còn lại, \(S=\varnothing\)
Phá ngoặc được \(T=2+\frac{1}{a}+\frac{1}{b}+a+b+\frac{a}{b}+\frac{b}{a}=2+\frac{a+b}{ab}+a+b+\frac{a}{b}+\frac{b}{a}\)
Theo bdt cosi ta có \(\frac{a}{b}+\frac{b}{a}\ge2\Rightarrow T\ge4+\frac{a+b}{ab}+a+b\)
Ta có \(\frac{a+b}{ab}+a+b=\frac{a+b}{2ab}+\left(a+b\right)+\frac{a+b}{2ab}\) Theo bdt cosi
\(\frac{a+b}{2ab}+\left(a+b\right)\ge2\sqrt{\frac{\left(a+b\right)^2}{2ab}}\ge2\sqrt{\frac{4ab}{2ab}}=2\sqrt{2}\)
Lại có \(1=a^2+b^2\ge2ab\Rightarrow\frac{1}{ab}\ge2\Rightarrow\frac{1}{\sqrt{ab}}\ge\sqrt{2}\)
\(\frac{a+b}{2ab}\ge\frac{2\sqrt{ab}}{2ab}=\frac{1}{\sqrt{ab}}\ge\sqrt{2}\) \(\Rightarrow T\ge4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
Giải phương trình
\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\) (a và b là hằng)
\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}\) (ĐKXĐ: a\(\pm\)b)
\(\Leftrightarrow\frac{\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)}{a^2-b^2}=\frac{-2ab}{a^2-b^2}\)
\(\Leftrightarrow\frac{-a^2+xa-xb+ab-b^2+xa+xb-ab+2ab}{a^2-b^2}=0\)
\(\Leftrightarrow-\left(a-b\right)^2+2xa=0\)
\(\Leftrightarrow x=\frac{\left(a-b\right)^2}{2a}\)
Vậy phương trình có nghiệm \(x=\frac{\left(a-b\right)^2}{2a}\)
Giải
Điều kiện xác định của phương trình : \(a\ne\pm b\)
Biến đổi phương trình:
\(\left(x-a\right)\left(a-b\right)+\left(x-b\right)\left(a+b\right)=-2ab\)
\(\Leftrightarrow ax-bx-a^2+ab+ax+bx-ab-b^2=-2ab\)
\(\Leftrightarrow2ax=a^2+b^2-2ab\)
\(\Leftrightarrow2ax=\left(a-b\right)^2\)
Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)
Nếu a = 0 thì \(2ax=\left(a-b\right)^2\) có dạng \(0x=b^2\). Do \(a\ne b\) nên \(b\ne0\), phương trình vô nghiệm
Kết luận
Nếu \(a\ne0\), \(a\ne\pm b\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)
Còn lại, \(S=\varnothing\)
Rút gọn A=\(\frac{a^2+2ab+b^2}{a}.\left(\frac{a}{a^2+2ab+b^2}-\frac{a}{a^2-b^2}\right)+\frac{5a-3b}{a-b}\)
Cho a,b>0 và \(x=\frac{2ab}{b^2+1}\) Cho \(B=\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a+x}}+\frac{x}{3b}\)
Rút gọn B
1) Cho
X = \(\left(\frac{1}{a^2}+\frac{1}{b^2}\right).\frac{1}{a^2+2ab+b^2}\)
Y = \(\frac{2}{\left(a+b\right)^2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)
Z = \(\frac{a-b}{a^3+b^3}\)
Hãy tính ( X + Y) : Z
CMR \(\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)
ĐK: a;b>0
Áp dụng BĐT Cauchy-schwarz ta có:
\(\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{1}{2ab}+\frac{\left(1+1\right)^2}{2ab+a^2+b^2}=\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}\)
đpcm