Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Thi Hai Anh
Xem chi tiết
Aria Von Reiji Asuna
Xem chi tiết
zZz Cool Kid_new zZz
23 tháng 9 2019 lúc 22:04

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-5+7}{\sqrt{x}-5}=1+\frac{7}{\sqrt{x}-5}\)

Để A là số nguyên thì \(\frac{7}{\sqrt{x}-5}\) là số nguyên

\(\Rightarrow\sqrt{x}-5\in\left\{1;7;-1;-7\right\}\)

Auto làm nốt

Đỗ Thị Tú Uyên
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Victorique de Blois
12 tháng 8 2021 lúc 18:00

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

Khách vãng lai đã xóa
See you again
Xem chi tiết
Despacito
6 tháng 2 2018 lúc 21:12

\(A=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

a) \(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)

\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)

\(A=\frac{\frac{-9}{2}}{\frac{7}{2}}\)

\(A=\frac{-9}{2}.\frac{2}{7}\)

\(A=\frac{-9}{7}\)

b) \(A=-1\Leftrightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}=-1\)

\(\Leftrightarrow-\sqrt{x}-3=\sqrt{x}-5\)

\(\Leftrightarrow-\sqrt{x}-\sqrt{x}=-5+3\)

\(\Leftrightarrow-2\sqrt{x}=-2\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

vậy \(x=1\)

c) \(A=\frac{\sqrt{x}+3-8}{\sqrt{x}+3}\)

\(A=1-\frac{8}{\sqrt{x}+3}\)

\(\Leftrightarrow\sqrt{x}+3\inƯ\left(8\right)\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

lập bảng tự làm 

Dũng Lê Trí
6 tháng 2 2018 lúc 21:08

\(A=\frac{\sqrt{\frac{1}{4}}-5}{\sqrt{\frac{1}{4}}+3}\)

\(A=\frac{\frac{1}{2}-5}{\frac{1}{2}+3}\)

\(A=\frac{-\frac{9}{2}}{\frac{7}{2}}=-\frac{9}{2}\cdot\frac{2}{7}=-\frac{9}{7}\)

Nguyễn Xuân Anh
6 tháng 2 2018 lúc 21:26

\(\text{a) Với }x=\frac{1}{4}\text{ ta có:}A=\frac{\sqrt{x}-5}{\sqrt{x}+3}=1-\frac{8}{\sqrt{0.25}+3}=\frac{-9}{7}\)

b) A=-1 => A=\(1-\frac{8}{\sqrt{x}+3}=-1\Rightarrow\frac{8}{\sqrt{x}+3}=2\Leftrightarrow\sqrt{x}+3=4\Leftrightarrow x=1\)

c) Để A nguyên thì x+3 thuộc Ư(8)={\(\mp1;\mp2;\mp4;\mp8\)}

+ Với x+3=-8 thì x= -11

+ Với x+3=-4 thì x= -7

+ Với x+3=-2 thì x= -5

+ Với x+3= -1thì x= -4 

+ Với x+3=1 thì x=-2 

+ Với x+3=2 thì x= -1

+ Với x+3=4 thì x=1

+ Với x+3=8 thì x=5

monkey d luffy
Xem chi tiết
do thi thanh thuy
9 tháng 3 2017 lúc 21:07

Ta có : A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=    \(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)  =      1+\(\frac{4}{\sqrt{x}-3}\)                                                                                                                        Để A có giá trị nguyên thi \(\sqrt{x}-3\)là ước của 4                                                                                                                                           \(\sqrt{x}-3\)= +-1;+-2;+-4                                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=1 suy ra x=16                                                                                                                                                                      Nếu\(\sqrt{x}-3\)=-1 suy ra x=4                                                                                                                                                                        Nếu\(\sqrt{x}-3\)= 2 suy ra  x=25                                                                                                                                                                      Nếu \(\sqrt{x}-3\)=-2 suy ra x=1                                                                                                                                                                        Nếu \(\sqrt{x}-3\)=4 suy ra x=49                                                                                                                                                                      Neu  \(\sqrt{x}-3\)=-4 suy ra \(\sqrt{x}\)=-1 (loại)                                                                                                                    Vậy x=.......                                                                                                                                                                                                               Bạn thử cách này xem sao nhé mình cũng chưa thử cách này bao giờ

nguyễn quốc tú
Xem chi tiết
Nguyễn Văn Tuấn
Xem chi tiết
Ngô Chi Lan
28 tháng 8 2020 lúc 14:37

Bài làm:

đk: \(x\ge0\)

Ta có: \(A=\frac{x-\sqrt{x}-5}{\sqrt{x}+3}=\frac{\left(x-\sqrt{x}-12\right)+7}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)+7}{\sqrt{x}+3}\)

\(=\sqrt{x}-4+\frac{7}{\sqrt{x}+3}\)

+ Nếu: x không là số chính phương => \(\sqrt{x}\) vô tỉ

=> A vô tỉ (loại)

+ Nếu: x là số chính phương

=> \(\sqrt{x}\) nguyên

Khi đó để A nguyên => \(\frac{7}{\sqrt{x}+3}\inℤ\Rightarrow\left(\sqrt{x}+3\right)\inƯ\left(7\right)\)

Mà \(\sqrt{x}+3\ge3\left(\forall x\right)\) => \(\sqrt{x}+3=7\Leftrightarrow\sqrt{x}=4\Rightarrow x=16\)

Vậy khi x = 16 thì biểu thức A đạt giá trị nguyên

Khách vãng lai đã xóa
Nguyễn Văn Tuấn
28 tháng 8 2020 lúc 14:47

thanks FL.Shizuka nha !

Khách vãng lai đã xóa
vu minh hang
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 5 2016 lúc 10:08

a) Để \(\frac{11}{\sqrt{x}-5}\)nhận giá trị nguyên thì \(\sqrt{\text{x}}-5\inƯ\left(11\right)\)(DK : \(0\le x\ne25\))

Vì \(\sqrt{\text{x}}-5\ge-5\)nên ta có : 

\(\sqrt{x}-5\in\left\{-1;1;11\right\}\)\(\Rightarrow\sqrt{x}\in\left\{4;6;16\right\}\Rightarrow x\in\left\{16;36;256\right\}\)

b) \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)(DK : \(0\le x\ne9\))

Để B nhận giá trị nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)\)

Vì \(\sqrt{\text{x}}-3\ge-3\)nên ta có : 

\(\sqrt{\text{x}}-3\in\left\{-2;-1;1;2;4\right\}\)\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)