\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)tim x
\(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
\(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)
\(=>\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)
\(=>\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)
\(=>\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
\(=>x+2010=0\)
\(=>x=-2010\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+2007}{3}+\frac{x+2006}{4}\)
\(pt\Leftrightarrow\frac{x}{2009}+\frac{1}{2009}+\frac{x}{2008}+\frac{2}{2008}=\frac{x}{3}+\frac{2007}{3}+\frac{x}{4}+\frac{2006}{4}\Leftrightarrow\frac{x}{2009}+\frac{x}{2008}-\frac{x}{3}-\frac{x}{4}=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x=\frac{\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}}{\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}}=-2010\)
tìm x,biết:\(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+3}{2007}+\frac{x+4}{2006}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)\)
\(\Rightarrow\left(\frac{x+1}{2009}+\frac{2009}{2009}\right)+\left(\frac{x+2}{2008}+\frac{2008}{2008}\right)=\left(\frac{x+3}{2007}+\frac{2007}{2007}\right)+\left(\frac{x+4}{2006}\frac{2006}{2006}\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2007}+\frac{x+2010}{2006}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2007}-\frac{x+2010}{2006}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
=>x+2010=0
=>x=-2010
Vậy x = -2010
tìm x biết:\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Trừ 1 đi ở mỗi phân số, ta có:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Rightarrow\frac{x-1}{2009}-\frac{2009}{2009}+\frac{x-2}{2008}-\frac{2008}{2008}=\frac{x-3}{2007}-\frac{2007}{2007}+\frac{x-4}{2006}-\frac{2006}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Rightarrow\left[x-2010\right]\left[\frac{1}{2009}+\frac{1}{2008}\right]=\left[x-2010\right]\left[\frac{1}{2007}+\frac{1}{2006}\right]\)
Sẽ có hai trường hợp
TH1: Cả hai vế đều bằng 0
Ta có: \(\hept{\begin{cases}\frac{1}{2009}+\frac{1}{2008}\ne0\\\frac{1}{2007}+\frac{1}{2006}\ne0\end{cases}}\Rightarrow x-2010=0\Rightarrow x=2010\)
TH2: Cả hai vế khác 0
Ta bỏ đi x - 2010 vì cả hai bên đều có
\(\Rightarrow\frac{1}{2009}+\frac{1}{2008}=\frac{1}{2007}+\frac{1}{2006}\)Vô lí
Vậy x = 2010
\(\frac{x+5}{2005}+\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}+\frac{x}{2010}\)
Tim x biet :
\(a,\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(b,\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)\)
a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)
<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
<=> x = 2010
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)\)
Ta thấy : \(\left|x-1\right|\ge0;\left|x-2\right|\ge0;\left|x-3\right|\ge0\)
=> \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge0\)
=> 4 ( x - 4 ) \(\ge0\). Mà 4 > 0 => \(x-4\ge0=>x\ge4\)hay
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)=>x-1+x-2+x-3=4\left(x-4\right)\) => 3x - 6 = 4x - 16
=> -6+16 = 4x - 3x => x = 10
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Tìm x
Ta có:
x-1/2009 + x-2/2008 = x-3/2007 + x-4/2006
=> (x-1/2009 - 1)+(x-2/2008 - 1) = (x-3/2007 - 1) + (x-4/2006 -1 )
=> x-2010/2009 + x-2010/2008 = x-2010/2007 + x-2010/2006
=> x-2010/2009 + x-2010/2008 - (x-2010/2007 + x-2010/2006)=0
=> (x-2010)(1/2009+1/2008-1/2007-1/2006)=0
Vì (1/2009+1/2008-1/2007-1/2006) KHÁC 0
=>x-2010=0
=>x=2010
\(\frac{x-1}{2009}+1+\frac{x-2}{2008}+1=\frac{x-3}{2007}+1+\frac{x-4}{2006}+1\)
\(\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2007}+\frac{x+2010}{2006}\)
\(\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2007}-\frac{x+2010}{2006}=0\)
\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)\ne0\)
\(\Rightarrow x+2010=0\)
\(\Rightarrow x=-2010\)
\(\text{Tìm x biết :}\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
Tìm x biết:
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
X-1/2009 + X-2/2008 = X-3/2007 + X-4/2006
thôi nói cho nhanh nhé
bạn trừ 1 vào tất cả các giá trị VD: (X-1/2009)-1. Ta được tử chung là X-2010 cứ thế mà đặt ra làm thôi. Ko dc thì bảo tớ chỉ tiếp.