tìm số nguyên tố p,q thỏa mãn \(A_{\left(x\right)}=x^2+px+q\) có các nghiệm nguyên
Tìm các số nguyên tố p, q và số nguyên x thỏa mãn x5 + px + 3q = 0
Tìm các số nguyên tố p, q và số nguyên x thỏa mãn x5 + px + 3q = 0
x5 + 3q = -px mà p là số nguyên tố lên x5 +3q \(⋮x=>3q⋮x=>3⋮x\)(vì q là số nguyên tố)
=> x=1;-1 ; 3; -3
x=1 =>1+ p + 3q >0 (loại); x= 3 tương tự cũng lọai
x=-1 => -1-p +3q=0 <=> 3q -1 = p
xét q =1 => p =2 (thỏa mãn)
xét q = 2 => p=5 (thỏa mãn)
với q>2 mà q là số nguyên tố nên q phải là số lẻ => 3q là số lẻ => 3q -1 là số chẵn => p là số chẵn lớn hơn 2 => p không là số nguyên tố (loại)
xét x = -3 => -3 -3p + 3q =0 => q-1= p
xét tương tự q= 2 => p=1 thỏa mãn
q=3 => p=2 thỏa mãn
q>3 => q là só nguyên tô lẻ => q-1 là số chắn lớn hơn 2 => p là số chắn >2 => không là số nguyên tố(loại)
vậy ta có các nghiệm (x; p; q) = ( -1; 2; 1); (-1; 5; 2); (-3; 1; 2); (-3; 2; 3)
Bài bạn làm sai rồi ( tỉ lệ sai : 100%) dễ thấy vì q là số nguyên tố nên xét TH q =2 thôi xét q=1 làm gì ? Vì 1 ko phải scp . Lỗi thứ 2 là : TH x=-3 bạn suy ra -3-3p+3q=0 mà đề bài cho x^5 + px+3q=0 .Do đó vô lý.
CÁ TRÊ tra bài nhớ cho mình đúng nha
a)Tìm tất cả các cặp số nguyên tố (p,q) thỏa mãn \(p^2-5q^2=4\)
b) Cho đa thức \(f\left(x\right)=x^2+bx+c\). Biết b,c là các số dương và f(x) có nghiệm. Chứng minh \(f\left(2\right)\ge9\sqrt[3]{c}\)
a, => p^2 = 5q^2 + 4
+, Nếu q chia hết cho 3 => q=3 => p=7 ( t/m )
+, Nếu q ko chia hết cho 3 => q^2 chia 3 dư 1 => 5q^2 chia 3 dư 5
=> p^2 = 5q^2 + 4 chia hết cho 3
=> p chia hết cho 3 ( vì 3 là số nguyên tố )
=> p = 3 => q = 1 ( ko t/m )
Vậy p=7 và q=3
Tk mk nha
a) Chứng minh rằng nếu số nguyên \(n\)lớn hơn 1 thỏa mãn \(n^2+4\)và \(n^2+16\)là các số nguyên tố thì \(n\)chia hết cho 5.
b) Tìm nghiệm nguyên của pt: \(x^2-2y\left(x-y\right)=2\left(x+1\right)\)
Tìm x,y thỏa mãn: \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Tìm nghiệm nguyên: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\)
Tìm x,y,z nguyên dương thỏa mãn: \(\frac{x-y\sqrt{2020}}{y-z\sqrt{2020}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
1.Tìm các số nguyên x,y thỏa mãn:\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)
2. Số sau là nguyên tố hay hợp số:
\(111...1\)(2002 chữ số 1)
1, Có (x-2)2\(\ge\)0
(y-2)2\(\ge\)0
=>(x-2)2.(y-3)2\(\ge\)0
Mà (x-2)2.(y-3)2=-4
Vậy không có x, y thỏa mãn
Có 111...1=11.1010...01
Vậy số 111...1(2002 số 1) sẽ chia hết cho 11 nên nó sẽ là hợp sô
(phần này hơi sơ sài nên có cái gì phải hỏi luôn
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các số nguyên tố p q ,và số nguyên dương n thỏa mãn:
\(p\left(p+3\right)+q\left(q+3\right)=n\left(n+3\right)\)
Cho P(x), Q(x) là các đa thức hệ số nguyên và a nguyên thỏa mãn đòng thời 2 điều kiện sau :
a) P(a) = P(a + 83)
b) Q(2) = 14.
CMR : phương trình \(Q\left(P_{\left(x\right)}\right)=2014\) không có nghiệm nguyên
Thấy Q(2) = 14
=> am.xm+am-1.xm-1.......a1x.a0= 14( am,am-1,...,a1,a0 thuộc N, a0 khác 0)
=> am.2m+am-1.2m-1.......a12.a0= 14
Thấy : 2m,2m-1,...,2 là số chẵn
=> am,2m,...,a12 là số chẵn
=> a0 là số chẵn
* Nếu a lẻ
=> a + 83 chẵn
cmtt, có P(a + 83 là số chẵn )
* Nếu a chẵn
=> ....(cmtt)
=> P(a) chẵn
=> P(x) chẵn với mọi X thuộc N
=> Q(p(x)) chẵn và = 2014
:PPPPPPPPPPP