tìm x thuộc Z, biết:
a,2x-1 chia hết cho x+2
b,-3:(x-2) là số nguyên
1.Tính nhanh nếu có thể:
a) 22 + 23 + 89 + 77
b) 35 . 15 + 15 . 65
c) 72 - 36 : 32
d) 476 - {5 . [409 - (8 . 3 - 21)2] - 1724}
2. Tìm x, biết:
a) x + 37 = 50
b) 2x - 3 = 11
c) (x - 105) : 21 = 15
3. Tìm số tự nhiên x,y biết:
a) 56x chia hết cho 2
b) 34y chia hết cho 2 và 5
4. Cho A = 2 + 22 + 23 + ... + 220
Chững minh A chia hết cho 3
1.Tính nhanh nếu có thể:
a) 22 + 23 + 89 + 77
= ( 77 + 23 ) + 22 + 89
= 100 + 22 + 89
= 122 + 89
= 211
b) 35 . 15 + 15 . 65
= 15 . ( 35 + 65 )
= 15 . 100
= 1500
c) 7^2 - 36 : 3^2
= 7^2 - 36 : 9
= 7^2 - 4
= 49 - 4
= 45
d) 476 - {5 . [409 - (8 . 3 - 21)2] - 1724}
= 476 - {5 . [409 - (24 - 21)^2] - 1724}
= 476 - {5 . [409 - (3^2)] - 1724}
= 476 - {5 . [409 - 9 ] - 1724}
= 476 - {5. 400 - 1724}
= 476 - {2000 - 1724}
= 476 - 276
= 200
2. Tìm x, biết:
a) x + 37 = 50
x = 50 - 37
x = 13
b) 2x - 3 = 11
2x = 11 + 3
2x = 14
2x = 2 . 7
tìm số nguyên x để:
a, 3 không chia hết cho x+2
b, 2x-1 không chia hết cho x-1
c, x+3⋮2
a: \(3⋮̸x+2\)
=>\(x+2\notin\left\{1;-1;3;-3\right\}\)
=>\(x\notin\left\{-1;-3;1;-5\right\}\)
b: \(2x-1⋮̸x-1\)
=>\(2x-2+1⋮̸x-1\)
=>\(1⋮̸x-1\)
=>\(x-1\notin\left\{1;-1\right\}\)
=>\(x\notin\left\{2;0\right\}\)
c: \(x+3⋮2\)
mà \(3⋮̸2\)
nên \(x⋮̸2\)
=>x\(\in\){2k+1;k\(\in\)Z}
Bài 1: Tìm x thộc Z, biết:
a) -12 là bội của x+3
b) 9-x là ước của -15
c) 4 chia hết cho (10-x)
d) 10 chia hết cho (2x+1)
e) (x+7) chia hết cho (x-6)
g) 3x+2 chia hết cho +4
a: \(\Leftrightarrow x+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
hay \(x\in\left\{-2;-4;-1;-5;0;-6;1;-7;3;-9;9;-15\right\}\)
1. tìm các số nguyên x và y biết (2x+1).(y-4)=12
2. Tìm n thuộc Z biết (n-7) chia hết cho (n+1)
3. tìm x thuộc Z biết /x+3\+2<4
MONG CÁC BẠN GIÚP MÌNH GIẢI HẾT
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
Tìm x thuộc Z sao cho
a) x^2+x+1 chia hết cho x+1
b)3x-8 chia hết cho x-4
c) x+5 chia hết cho x-2
d) Tìm số nguyên dương x sao cho 2x là bội của x-1
a) \(x^2+x+1=x\left(x+1\right)+1\)
Vì \(x\inℤ\)\(\Rightarrow x\left(x+1\right)⋮x+1\)\(\Rightarrow\)Để \(x^2+x+1⋮x+1\)thì \(1⋮x+1\)
\(\Rightarrow x+1\inƯ\left(1\right)=\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{-2;0\right\}\)
Vậy \(x\in\left\{-2;0\right\}\)
b) \(3x-8=3x-12+4=3\left(x-4\right)+4\)
Vì \(3\left(x-4\right)⋮x-4\)\(\Rightarrow\)Để \(3x-8⋮x-4\)thì \(4⋮x-4\)
\(\Rightarrow x-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng giá trị ta có:
\(x-4\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(x\) | \(0\) | \(2\) | \(3\) | \(5\) | \(6\) | \(8\) |
Vậy \(x\in\left\{0;2;3;5;6;8\right\}\)
Tìm x thuộc Z :
-5 : ( x - 4 ) là số nguyên
2x - 3 chia hết x + 1 và x > 3
Cho a = 2 + 2 mũ 2 + 2 mũ 3 + ..... + 2 mũ 8
CT : A chia hết cho -6
Ai giải mình **** cho :D
giúp mình với các bạn ơi!!!!
tìm x thuộc Z để
a) 1 :x là số nguyên
b) 1 : (x-1) là số nguyên
c) -3 : (x-2) là số nguyên
f) (x +8) chia hết cho (x+7)
g) (2x-9) chia hết cho ( x-5)
bạn nào làm nhanh mà đúng mình tick cho nhé
helpppp
Tìm x thuộc Z:
a,-1: x là số nguyên
b,1:(x+1) là số nguyên
c,-2: x là số nguyên
d,3:(x-2) là số nguyên
e,(x+8) chia hết cho (x-7)
f,(2x+9) chia hết cho (x-5)
g,(2x+16) chia hết cho (x-8)
h,(5x+2) chia hết cho (x-1)
k,3x chia hết cho (x-2)
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
tìm a, b để f(x) chia hết cho g(x )
1 f(x)= x^4 - 3x^3 - ax +b g(x)= x^2-1
2, x^4 - 3x^3 + 3x^2 +2x +b g(x) = x^2-3x - 14
tìm x thuộc Z để gt của A(x) chia hết cho giá trị của B(x)
A(x) = 5x^3- x^2 + 1 B(x)= x - 5
tìm x thuộc Z để phân thức sau là số nguyên
x^3+x-1 / x+2
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !