Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Nhật Minh
Xem chi tiết
Đặng Quốc Huy
Xem chi tiết
bach nhac lam
13 tháng 2 2020 lúc 20:56

\(n^2-3n+25=n^2+2n-5n-10+35\)

\(=n\left(n+2\right)-5\left(n+2\right)+35=\left(n+2\right)\left(n-5\right)+35\)

\(\left(n+2\right)-\left(n-5\right)=7⋮7\)

=> \(n+2\)\(n-5\) có cùng số dư khi chia 7

+ TH1: \(\left\{{}\begin{matrix}n+2⋮7\\n-5⋮7\end{matrix}\right.\) \(\Rightarrow\left(n+2\right)\left(n-5\right)⋮49\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸̸49\)

hay \(n^2-3n+25⋮̸49\)

+ TH2 : \(\left\{{}\begin{matrix}n+2⋮̸7\\n-5⋮̸7\end{matrix}\right.\) \(\Rightarrow\left(n+2\right)\left(n-5\right)⋮̸7\)

\(\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸7\) \(\Rightarrow\left(n+2\right)\left(n-5\right)+35⋮̸49\)

Vậy trong mọi TH ta đề có \(n^2-3n+25⋮̸49\) \(\forall n\in Z\)

Khách vãng lai đã xóa
Đặng Quốc Huy
Xem chi tiết
Trương Anh Kiệt
Xem chi tiết
Akai Haruma
27 tháng 1 2022 lúc 11:23

Lời giải:
Giả sử $n^2+n+9\vdots 49$

$\Rightarrow n^2+n+9\vdots 7$

$\Leftrightarrow n^2+n-7n+9\vdots 7$

$\Leftrightarrow (n-3)^2\vdots 7$

$\Leftrightarrow n-3\vdots 7(*)$

$\Leftrightarrow (n-3)^2\vdots 49$

$\Leftrightarrow n^2-6n+9\vdots 49$

$\Leftrightarrow (n^2+n+9)-7n\vdots 49$

$\Leftrightarrow 7n\vdots 49$ (do $n^2+n+9\vdots 49$ theo giả sử)

$\Leftrightarrow n\vdots 7$ (vô lý theo $(*)$)

Vậy điều giả sử là sai. Tức là $n^2+n+9\not\vdots 49$ với mọi $n$ nguyên.

akmu
Xem chi tiết
Cô Hoàng Huyền
15 tháng 8 2018 lúc 16:15

a) Em tham khảo tại đây nhé:

Câu hỏi của VRCT_Ran love shinichi - Toán lớp 8 - Học toán với OnlineMath

Phạm Nhật Anh
Xem chi tiết
Trần Thị Loan
10 tháng 11 2015 lúc 23:21

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự:

phungviphong
Xem chi tiết
Đoàn Đức Hà
25 tháng 8 2021 lúc 22:53

\(n\left(3n-1\right)-3n\left(n-2\right)=3n^2-n-\left(3n^2-6n\right)=3n^2-n-3n^2+6n=5n\)

luôn chia hết cho \(5\)với mọi số nguyên \(n\).

Khách vãng lai đã xóa
Nguyễn Thanh Xuân
Xem chi tiết
Không Tên
26 tháng 7 2018 lúc 14:57

\(49-\left(3n-7\right)^2\)

\(=49-\left(9n^2-42n+49\right)\)

\(=-9n^2+42n\)

\(=-3\left(3n^2-14n\right)\)\(⋮\)\(3\)

Phu Nguyen huu
Xem chi tiết
Đặng Xuân Hiếu
4 tháng 4 2015 lúc 19:26

Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)

Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3

Thật vậy

Ta có TH1: n = 3k + 1 (k thuộc Z)

=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3

         TH2: n = 3k + 2 (k thuộc Z)

=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3

=> n(n + 1)(2n + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n

Lê Tuấn Dương
2 tháng 1 2017 lúc 16:49

bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm