tìm tất cả các số nguyên ab sao cho 2a-b+2ab-10=0
Tìm tất cả các cặp số nguyên a, b thỏa mãn: 3a - b + 2ab - 10 = 0
Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik
Bạn tham khảo:
3a−b+2ab−10
⇒2ab−b+3a=10
⇒b(2a−1)+3a=10
⇒2b(2a−1)+6a=10.2
⇒2b(2a−1)+6a−3=20−3
⇒2b(2a−1)+3(2a−1)=17
⇒(2a−1)(2b+3)=17
⇒2a−1∈Ư(17)=⇒2a−1∈Ư(17)= { ±1;±17±1;±17 }
.) Nếu 2a−1=12a−1=1 thì 2b+3=172b+3=17
⇒a=1;b=7
.) Nếu 2a−1=−12a−1=−1 thì 2b+3=−172b+3=−17
⇒a=0;b=−10
.) Nếu 2a−1=172a−1=17 thì 2b+3=12b+3=1
⇒a=9;b=−1
.) Nếu 2a−1=−172a−1=−17 thì 2b+3=−12b+3=−1
⇒a=−8;b=−2
ta có (3a+2ab) - b - 10=0
a(3+2b) - .1/2(2b+3)+3/2-10=0
(2a-1).(2b+3)=17
vì a, b nguyên nên 2a-1 nguyên, 2b +3 nguyên
2a-1 và 2b+ 3 thuộc ước nguyên của 17
ta có bảng sau
2a-1 | 1 | -1 | 17 | -17 |
2b+3 | 17 | -17 | 1 | -1 |
a | 1 | 0 | 9 | -8 |
b | 7 | -10 | -1 | -2 |
tự kết luận nhé
Tìm tất cả các cặp số nguyên ( a ; b ) thỏa mãn điều kiện
\(3a-b+2ab-10=0\)
tim tất cả các số nguyên (a,b)thỏa mãn điều kiện 3a-b+2ab-10=0
https://hoidap247.com/cau-hoi/246405
bạn tìm ở đây nhé
Tìm tất cả các cặp số nguyên dương (a;b) sao cho \(\frac{a^2\left(b-2a\right)}{b+2a}\)là bình phương của một số nguyên tố
Tìm tất cả các cặp số nguyên dương (a , b) sao cho a2 / 2ab2 - b3 + 1 thuộc N*.
a)Tìm số nguyên n sao cho 2n-1laf bội của n+3
b)Tìm tất cả các số nguyên a biết:6a+1 chia hết cho 2a-1
a,2n-1 chia hết cho n+3
=> 2n+6-7 chia hết cho n+3
mà 2n+6 chia hết cho n+3
=>7 chia hết cho n+3
=> n-3 E Ư(7)
n-3={-7;-1;1;7}
=>n={-4;2;4;10}
b,6a+1 chia hết cho 2a-1
=>6a-3+4 chia hết cho 2a-1
mà 6a-3 chia hết cho 2a-1
=>4 chia hết cho 2a-1
=> 2a-1 E Ư(4)
2a-1={-4;-2;-1;1;2;4}
2a={-3;-1;0;2;3;5}
mà a là số nguyên
=> a={0;1}
3, Tìm tất cả các cặp số nguyên dương (a , b) sao cho a2 / 2ab2 - b3 + 1 thuộc N*.
a) Tìm tất cả các số nguyên n sao cho A = \(\dfrac{1-6n}{2n-3}\) là một số nguyên
b) Cho các phân số: \(\dfrac{ab}{a+2b}=\dfrac{3}{2},\dfrac{bc}{b+2c}=\dfrac{4}{3},\dfrac{ca}{c+2a}=3\)
Rút gọn phân số T = \(\dfrac{abc}{ab+bc+ca}\)
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
Tìm tất cả các số nguyên a biết:( 6a+10) chia hết cho ( 2a - 1)
6a + 10 = 3(2a - 1) + 13 chia hết cho 2a - 1
=> 3(2a - 1) chia hết cho 2a - 1 và 13 chia hết cho 2a - 1
2a - 1 \(\in\)Ư(13) = { -1;1; -13;13}
=> a \(\in\) {0; 1; -6;7}
6a+10
=2a+2a+2a+13-3
=2a-1+2a-1+2a-1+13
=3(2a-1)+13
3(2a-1) chia hết cho 2a-1
=>13 chia hết cho 2a-1
=>2a-1 thuộc thuộc Ư(13)
=>2a-1 thuộc {1;-1;13;-13}
2a thuộc {2;0;14;-12}
a thuộc {1;0;7;-6}
tick mình nha