Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm cặp số nguyên x,y thỏa mãn :
\(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{2\left(y-5\right)^2+2}\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Tìm cặp số nguyên (x;y) thỏa mãn đẳng thức:
\(\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x+y\right)\left(4x^2-2xy+y^2\right)-16x\left(x^2-y\right)=32\)
Tìm cặp số nguyên ( x ; y ) thỏa mãn:
\(\left|y+2011\right|+30=\frac{2010}{\left(2x+6\right)^2+67}\)
\(\hept{\begin{cases}\left|y+2011\right|+30\ge30\\\frac{2010}{\left(2x+6\right)^2+67}\le30\end{cases}\text{dấu = xảy ra khi }}\hept{\begin{cases}\left|y+2011\right|=0\\\left(2x+6\right)=0\end{cases}\Rightarrow\hept{\begin{cases}y=-2011\\x=-3\end{cases}}}\)
làm tắt, cố hiểu nhoa :D!!
Tìm cặp số nguyên x,y thỏa mãn : \(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\)
Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)
:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)
\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)
Từ (1),(2) và (3)
Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)
Với y=1 thì x=2
Với y=2 thì x=1
Với y=3 thì x=0
Vậy....................
Tìm các cặp \(\left(x,y\right)\)nguyên thỏa mãn \(\left|4y^2-3\right|+\left|5-2x\right|=2013\)
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))
Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow\dfrac{y^2}{4}=1\)
\(\Leftrightarrow y^2=4\)
\(\Leftrightarrow y=\pm2\)
Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)
Tìm các số nguyên x;y thỏa mãn: \(2y\left(2x^2+1\right)-2x\left(2y^2+1\right)+1=x^3y^3\left(1\right)\)
Có bao nhiêu cặp số nguyên (x;y) thỏa mãn \(1\le x\le2023;1\le y\le2023\)
và \(4^{x+1}+\log_2\left(y+3\right)=2^{y+4}+\log_2\left(2x+1\right)\)
Đề thiếu điều kiện. Bạn xem lại.