Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Vi
Xem chi tiết
Nguyễn Phước Gia Hưng
Xem chi tiết
Tô Hoàng Long
7 tháng 11 2018 lúc 23:09

x=5,y=2

Natsu Dragneel
30 tháng 12 2018 lúc 19:43

X=5

Y=2

x=5 

y=2 nha

Khách vãng lai đã xóa
Hoàng Hải Hà
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Lê Minh Đức
16 tháng 7 2017 lúc 9:36

Ta có \(x^2=6y^2+1\) là số lẻ nên đặt \(x=2k+1\left(k\in N\right)\), ta có:

\(\left(2k+1\right)^2=6y^2+1\Rightarrow4k^2+4k+1=6y^2+1\Rightarrow4k^2+4k=6y^2\)

\(\Rightarrow2k\left(k+1\right)=3y^2\Rightarrow3y^2⋮2\Rightarrow y⋮2\Rightarrow y=2\) (vì y là số nguyên tố)

Thay y=2 vào đẳng thức ban đầu ta được: \(x^2=6.2^2+1=25\Rightarrow x=5\)

Vậy \(\left(x;y\right)=\left(5;2\right)\)

Thanh Hằng Nguyễn
16 tháng 7 2017 lúc 9:31

x = 5; y = 2

Nguyễn Lâm Ngọc
16 tháng 7 2017 lúc 9:32

Chi tiết cách giải ạ?

Trịnh Thị Mỹ Duyên
Xem chi tiết
Cô bé chăn vịt
Xem chi tiết
Hoàng Phúc
5 tháng 12 2015 lúc 19:44

x^2-6y^2=1

=>x^2-1=6y^2

=>y^2=\(\frac{x^2-1}{6}\)

nhân thấy y^2 thuộc Ư của x^2-1:6

=>y^2 là số chẵn

mà y là số nguyên tố=>y=2

thay vào =>x^2-1=4/6=24

=>x^2=25=>x=5

vậy x=5;y=2

Nguyễn Anh Thư
29 tháng 4 2016 lúc 10:01

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Nguyễn Anh Thư
29 tháng 4 2016 lúc 10:09

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

Jun Mike
Xem chi tiết
oOo Sát thủ bóng đêm oOo
26 tháng 7 2018 lúc 14:32

x=1

y=0

học tốt

A B C
Xem chi tiết
Huỳnh Quang Sang
22 tháng 6 2018 lúc 20:07

Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự

Bài 2 : Ta có :

\(x^2-6y^2=1\)

\(\Rightarrow x^2-1=6y^2\)

\(\Rightarrow y^2=\frac{x^2-1}{6}\)

Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)

=> y2 là số chẵn

Mà y là số nguyên tố => y = 2

Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)

\(\Rightarrow x^2=25\Rightarrow x=5\)

Vậy x=5 ; y =2

zZz Hoàng Tử Cô Đơn zZz
Xem chi tiết