Cho tam giác abc , ab = 3,ac=4 và s=3√3 tính bc
Cho tam giác ABC có AB/AC=3/4 và BC-AC=6. Tính chu vi tam giác ABC
Ta có: AB/AC=3/4 => AB/3=AC/4
=>. Đặt AB/3=AC/4=k
=> AB=3k ; AC=4k
Vì tg ABC vuông tại A
Áp dụng định lý Py-ta-go vào tg vuông ABC ta có:
=> AB^2 + AC^2 = BC^2
=> (3k)^2 + (4k)^2 = 15^2
=> 9k^2 + 16k^2 = 225
=> 25k^2 = 225
=> k^2=9 => k=3
=> AB=3k=3.3=9 cm
AC=4k=4.3=12 cm
1, cho tam giác abc ,a=90 độ ,đường cao ah = 12 ,bc=25.tình ab, ac, hb,hc
2, cho tam giác abc ,a=90 độ ,ab/ac = 3/2 ,đường cao ah = a .tính hb.hc.ab,ac,
3, cho abc , a=90 độ , ah=120 ,bc=289 . tính ab.ac.bh.hc
4, cho tam giác abc , a=90 độ đường cao ah=120 , ac=136 .tính ab,bc và phân giác ad và góc a
3:
Đặt HB=x; HC=y
Theo đề, ta có: x+y=289 và xy=120^2=14400
=>x,y là các nghiệm của phương trình:
a^2-289a+14400=0
=>a=225 hoặc a=64
=>(x,y)=(225;64) và (x,y)=(64;225)
TH1: BH=225cm; CH=64cm
=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)
TH2: BH=64cm; CH=225cm
=>AB=119m; AC=255cm
2. Cho tam giác ABC vuông tại A; AB/AC = 3/4; đường cao AH=18cm. Tính chu vi tam giác ABC ?
3. Cho hình thang ABCD ( AB//CD ) có AB= 9cm; CD= 30cm; AD=13cm; BC=20cm. Tính S hình thang ABCD ?
4. Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. Tính độ dài AB, AC biết AH= 6cm; S tám giác ABC = 37,5 cm2
5. Cho tam giác ABC vuông cân tại A, M thuộc BC, AM=m. Tính tổng MB^2 + MC^2 theo m
Làm ơn chỉ giúp mình, cảm ơn rất nhiều !
2/AB/AC=3/4 nên AB=3AC/4(1)
Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC
Cho tam giác ABC ,biết AB+AC=12,5 cm và 1/6 AC=1/4 AB .Trên BC lấy điểm I sao cho BI < 1/3 BC . Hãy tìm điểm K trên cạnh AC biết S ABIK = 1/3 S ABC.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
1 ) Cho tam giác ABC có góc A nhọn , AB=4 , AC=5 và diện tích tam giác ABC =8 . Tính BC
2 ) Cho tam giác ABC có AB=3 , góc ACB = 45° , góc ABC = 60° . Tính BC
em mới học lớp 7 hà
năm nay lên lớp 8 =)))))
1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)
\(\Leftrightarrow\sin A=0,8\)
Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)
Áp dụng định lí hàm số cosin:
\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)
\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)
\(\Leftrightarrow BC=\sqrt{17}.\)
2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)
=> BAC=75o.
Áp dụng định lí hàm số sin:
\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)
\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).
Cho tam giác ABC vuông tại A, đường cao AH a. Cho AH = 6; BH = 4. Tính AC, BC. b. Cho AB = 15; HC = 16. Tính BH, AC. c. Cho AH = 6; AB : AC = 3 : 4. Tính chu vi và diện tích tam giác ABC.
Cho tam giác ABC có cạnh Bc = 7,2 cm : chiều cao vẽ từ đỉnh A = 7,5 cm.
a)Tính S tam giác ABC
b)Trên AB lấy điểm P sao cho AP = 2/3 AB . Trên AC lấy Q sao cho AQ = 1/4 AC . Tính S tam giác APQ
a) Diện tich tam giác ABC là :
7,2 x 7,5 : 2 = 27 ( cm2 )
b) Nối P với C
Xét hai tam giác APC và ABC
Chung chiều cao hạ từ đỉnh C xuống cạnh AB
PA = 2/3 AB
=> SAPC = SABC x 2/3 = 27 x 2/3 = 18 ( cm2 )
Xét 2 tam giác APQ và APC
Chung chiều cao hạ từ đỉnh P xuống cạnh AC
AQ = 1/4 AC
=> SAPQ = SAPC X 1/4 = 18 x 1/4 = 4,5 ( cm2 )
Đáp số : 4,5 cm2
a,Sabc = 1/2 AH. BC = 1/2x7,2x7,5 = 27 cm^2
b,Tam giác APC và tam giác ABC có cùng chiều cao cạnh AP = 2/3 AB nên ta có
Sapc = 2/3 Sabc= 2/3 x 27 = 18cm^2
Tam giác APQ và tam giác APC có cùng chiếu cao cạnh AQ = 1/4 AC nên ta có
Sapq= 1/4 S apc = 1/4x 18 = 18/4 = 9/2cm^2
a = 27cm2
b = 4,5cm2
Cho tam giác ABC vuông tại A có AB bằng 3/4 AC BC = 30 tính AB và AC
Cho tam giác ABC = tam giác A'B'C'. Biết BC = 10 cm , AB : AC = 4:3 và AB + AC bằng 14 cm .Tính các canh của tam giác A'B'C'
Ta có:
AB:AC=4:3 =>\(\frac{AB}{4}=\frac{AC}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{AB}{4}=\frac{AC}{3}=\frac{AB+AC}{4+3}=\frac{14}{7}=2\)
=>\(\frac{AB}{4}=2\)=>AB=8
\(\frac{AC}{3}=2\)=>AC=4
Vì tam giác ABC= tam giác A'B'C'
=>AB=A'B' ; AC=A'C' ; BC=B'C'
Mà AB=8 ;AC=4 ;BC=10
=>A'B'=8 ;A'C'=4 ;B'C'=10