Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Linh Chi
Xem chi tiết
Cô Bé Nhân Mã
13 tháng 11 2016 lúc 9:43

A, Mọi số khi chia cho 3 chỉ xảy ra trong ba trường hợp: + chia hết cho 3

                                                                                   + chia 3 dư 1

                                                                                   + chia 3 dư 2

Vậy số p chỉ có một trong ba dạng :p=3k ; p=3k+1 ; p=3k +2 ( k thuộc N )

Nếu p= 3k thì p=3 ( vì phải là số nguyên tố )

                          Khi đó p +34= 3+34=37 ( là số nguyên tố )

                                    p+50= 3+50= 53 ( là số nguyên tố )

Nếu p= 3k+1 thì p+34= ( 3k+1 ) +34=3k+35 chia hết cho 5 và lớn hơn 1 nên là hợp số ( ko thỏa mãn )

Nếu p= 3k +2 thì p+50= ( 3k +2 ) + 50= 3k + 52 chia hết cho 2 và lớn hơn 1 nên ( ko thỏa mãn )

Vậy p=3 là thỏa mãn

Hoàng Linh Chi
13 tháng 11 2016 lúc 19:04

Giúp mình với. Mình sẽ k cho

Nguyễn Minh Khang
Xem chi tiết
HT.Phong (9A5)
9 tháng 1 lúc 15:17

loading...

Rem Ram
Xem chi tiết
Sakuraba Laura
7 tháng 1 2018 lúc 10:15

2)

Tổng của 2 số là 2009

=> Trong 2 số phải có 1 số chẵn và 1 số lẻ

Mà số nguyên tố chẵn duy nhất là 2

=> 1 số là 2. Số còn lại là:

      2009 - 2 = 2007 không là số nguyên tố

=> Tổng của 2 số nguyên tố không thể bằng 2009.

Sakuraba Laura
7 tháng 1 2018 lúc 10:13

1) 

Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)

Với p = 3 => p + 2 = 3 + 2 = 5 là  SNT

                => p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)

Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3

=> p + 2 là hợp số (loại)

Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3

=> p + 4 là hợp số (loại)

Vậy p = 3

Sakuraba Laura
7 tháng 1 2018 lúc 10:22

3)

a) (2x + 1)(y + 3) = 10

=> 2x + 1 và y + 3 là các ước của 10

Ư(10) = {1; 2; 5; 10}

Lập bảng giá trị:

2x + 111025
y + 310152
x04,50,52
y7-22-1

Đối chiếu điều kiện x,y ∈ N

=> x = 0, y = 7

Vậy x = 0, y = 7

Lê Văn Công Tuấn
Xem chi tiết
Lê Văn Công Tuấn
14 tháng 2 2016 lúc 16:50

giai ra voi

luc dao tien nhan
14 tháng 2 2016 lúc 16:50

5 nhé bạn

duyệt

Tiểu Thư Người Cá
14 tháng 2 2016 lúc 16:50

5 nhe ban tic minh 

Trương Thị Mai Phương
Xem chi tiết
Nguyễn danh hùng
Xem chi tiết
Trần Hoàng Sơn
Xem chi tiết
Đinh Tuấn Việt
29 tháng 6 2015 lúc 10:38

a) Vì k là số tự nhiên nên :

- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.

- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.

- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.

                Vậy k = 1 thỏa mãn đề bài.

Phạm Ngọc Thạch
29 tháng 6 2015 lúc 10:51

a) Điều kiện: k>0

  Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.

  7k có các ước:  1,k và 7 (vẫn còn nếu k là hợp số)

 Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài

b) Từ đề trên thì chắc chắn a không là số chẵn.

 Nếu k có dạng 3q thì:

           + k+6 chia hết cho 3 (loại)

   Nếu k có dạng 3q+1 thì 

          + k+14 = 3q + 15 chia hết cho 3 (loại)

 Nếu k có dạng 3q+2 (>5)thì:

   + Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)

   + Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)

Như vậy thì một trong các số trên đề sẽ là hợp số

  Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1

 => k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)

Hoàng Lê Hạnh Minh
Xem chi tiết
Princess Luna
30 tháng 10 2017 lúc 21:18

1) Ta có :

+ a=1.2.3.4....101 chia hết cho 2 ; 2 cũng chia hết cho 2. Vậy 1.2.3.4...101+2 chia hết cho 2. Vì nó lớn hơn 2 nên nó là hợp số.

+a=1.2.3.4.....101 chia hết cho 3 ; 3 cũng chia hết cho 3. Vậy 1.2.3.4....101+3 chia hết cho 3. Vì nó lớn hơn 3 nên nó là hợp số.

........ ( cứ như thế )

+a=1.2.3.4....101 chia hết cho 101 ; 101 cũng chia hết cho 101. Vậy 1.2.3.4.....101+101 chia hết cho 101. Vì nó lớn hơn 101 nên nó là hợp số.

=> a=1.2.3.4......101 là hợp số.

k nha !!!!!

Nguyễn Minh Khang
Xem chi tiết

a.

Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)

\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ

TH1: p chẵn và q lẻ \(\Rightarrow p=2\)

Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố

- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)

- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)

Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)

Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)

TH2: p lẻ và q chẵn \(\Rightarrow q=2\)

Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố

- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)

- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)

Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)

Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)

Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu

b.

x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)

Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)

\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)

Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên

\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên

\(\Rightarrow x+4=Ư\left(32\right)\)

Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)

\(\Rightarrow x=\left\{0;4;12;28\right\}\)

Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)

- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)

- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)

- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)

- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)

Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)