tìm số nguyên x biết : x+6,x+12,x+18,x+24 đều là các số nguyên tố.
Tìm số nguyên tố p, biết:
a, p+34 và p=50 đều là số nguyên tố
b, 5p+1 và 10p+1 đều là số nguyên tố
c, p+6, p+12, p+18, p+24 đều là số nguyên tố
A, Mọi số khi chia cho 3 chỉ xảy ra trong ba trường hợp: + chia hết cho 3
+ chia 3 dư 1
+ chia 3 dư 2
Vậy số p chỉ có một trong ba dạng :p=3k ; p=3k+1 ; p=3k +2 ( k thuộc N )
Nếu p= 3k thì p=3 ( vì phải là số nguyên tố )
Khi đó p +34= 3+34=37 ( là số nguyên tố )
p+50= 3+50= 53 ( là số nguyên tố )
Nếu p= 3k+1 thì p+34= ( 3k+1 ) +34=3k+35 chia hết cho 5 và lớn hơn 1 nên là hợp số ( ko thỏa mãn )
Nếu p= 3k +2 thì p+50= ( 3k +2 ) + 50= 3k + 52 chia hết cho 2 và lớn hơn 1 nên ( ko thỏa mãn )
Vậy p=3 là thỏa mãn
Bài 1:
Tìm các số nguyên x,y biết;
a,x.(2y-1)=6y+5 b,xy-2x+3y=4
Bài 2: Tìm các số tự nhiên x,n và số nguyên tố p,q biết:
a,pq+13;5p+q đều là số nguyên tố
b,(x^2+4x+32)(x+4)
1 ) Tìm số nguyên tố p , sao cho - + 2 và p + 4 cũng là các số nguyên tố ?
2 )Tổng của 2 số nguyên tố có thể bằng 2009 được không ? Tại sao ?
3 ) Tìm các số nguyên tố x và 7 , biết :
a ) ( 2x + 1 ) ( y + 3 ) = 10
b ) ( x + 1 ) ( 2y - 1 ) = 12
c ) x - 3 = y ( x + 2 )
d )( x + 6 ) =y ( x - 1 )
e ) ( 3x - 2 ) ( 2y - 3 ) = 1
2)
Tổng của 2 số là 2009
=> Trong 2 số phải có 1 số chẵn và 1 số lẻ
Mà số nguyên tố chẵn duy nhất là 2
=> 1 số là 2. Số còn lại là:
2009 - 2 = 2007 không là số nguyên tố
=> Tổng của 2 số nguyên tố không thể bằng 2009.
1)
Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)
Với p = 3 => p + 2 = 3 + 2 = 5 là SNT
=> p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)
Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3
=> p + 2 là hợp số (loại)
Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3
=> p + 4 là hợp số (loại)
Vậy p = 3
3)
a) (2x + 1)(y + 3) = 10
=> 2x + 1 và y + 3 là các ước của 10
Ư(10) = {1; 2; 5; 10}
Lập bảng giá trị:
2x + 1 | 1 | 10 | 2 | 5 |
y + 3 | 10 | 1 | 5 | 2 |
x | 0 | 4,5 | 0,5 | 2 |
y | 7 | -2 | 2 | -1 |
Đối chiếu điều kiện x,y ∈ N
=> x = 0, y = 7
Vậy x = 0, y = 7
Tìm p nguyên tố để p+6; p+12; p+18; p+24 đều là số nguyên tố
Bài 1.Tìm x,y,z: a.x/5 = -12/20 ; b.2/y = 11/-66 ; c.-3/6 = x/-2 = -18/y = -z/24
Bài 2.Tìm các số nguyên x và y biết : x<0<y và:
-2/x = y/3
Bài 3.Tìm các số nguyên x và y biết x - y = 4 và:
x-3/y-2 = 3/2
Bài 4.Viết dạng chung của tất cả các phân số bằng phân số 21/28
1) Tìm số nguyên tố p để p+2 và p+10 đều nhận giá trị là các số nguyên tố.
2) Tìm cặp số tự nhiên (x ; y) thỏa mãn x ×(y — 1) = 5 × y — 12
tìm tất cả số tự nhiên k, để
a. 7 x k là số nguyên tố
b. k;k+6;k+8;k+12;k+14 đều là các số nguyên tố
a) Vì k là số tự nhiên nên :
- Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.
- Nếu k = 1 thì 7 . k = 7, là số nguyên tố.
- Nếu k \(\ge\) 2 thì 7 . k \(\in\) B(7), không phải số nguyên tố.
Vậy k = 1 thỏa mãn đề bài.
a) Điều kiện: k>0
Số nguyên tố là số có hai ước tự nhiên 1 và chính nó.
7k có các ước: 1,k và 7 (vẫn còn nếu k là hợp số)
Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài
b) Từ đề trên thì chắc chắn a không là số chẵn.
Nếu k có dạng 3q thì:
+ k+6 chia hết cho 3 (loại)
Nếu k có dạng 3q+1 thì
+ k+14 = 3q + 15 chia hết cho 3 (loại)
Nếu k có dạng 3q+2 (>5)thì:
+ Nếu q chẵn thì 3q +2 chia hết cho 2 => k chia hết cho 2(loại)
+ Nếu q là 1 hợp số q có thể chia hết cho 3,5,7,9 (1)
Như vậy thì một trong các số trên đề sẽ là hợp số
Vậy q là 1 số nguyên tố khác 3,5,7 (do 1) và q cũng có thể bằng 1
=> k=3q+2 (với q bằng 1 và q là các số nguyên tố khác 3,5,7)
1) Gọi a = 2 x 3 x 4 x ... x 101. Có phải 100 số tự nhiên liên tiếp sau đều là hợp số không?
2) Tìm tất cả các số tự nhiên X e N để:
A, X2 + 6X là số nguyên tố.
B, 3x + 18 là số nguyên tố.
C, 56 - 5X là số nguyên tố.
Mình cần luôn bài giải đến tối nay. Mọi người làm ơn giải cho mình với!!!
1) Ta có :
+ a=1.2.3.4....101 chia hết cho 2 ; 2 cũng chia hết cho 2. Vậy 1.2.3.4...101+2 chia hết cho 2. Vì nó lớn hơn 2 nên nó là hợp số.
+a=1.2.3.4.....101 chia hết cho 3 ; 3 cũng chia hết cho 3. Vậy 1.2.3.4....101+3 chia hết cho 3. Vì nó lớn hơn 3 nên nó là hợp số.
........ ( cứ như thế )
+a=1.2.3.4....101 chia hết cho 101 ; 101 cũng chia hết cho 101. Vậy 1.2.3.4.....101+101 chia hết cho 101. Vì nó lớn hơn 101 nên nó là hợp số.
=> a=1.2.3.4......101 là hợp số.
k nha !!!!!
Tìm các số tự nhiên x,n và các số nguyên tố p,q biết
a, pq+13;5p+q là số nguyên tố
b, (x^2+4x+32).(x+4)=p^n
a.
Nếu p và q cùng lẻ \(\Rightarrow pq+13\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)
Nếu p;q cùng chẵn \(\Rightarrow5p+q\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (loại)
\(\Rightarrow\) p và q phải có 1 số chẵn, 1 số lẻ
TH1: p chẵn và q lẻ \(\Rightarrow p=2\)
Khi đó \(2q+13\) và \(q+10\) đều là số nguyên tố
- Nếu \(q=3\Rightarrow2q+13=2.3+13=19\) là SNT và \(q+10=13\) là SNT (thỏa mãn)
- Với \(q>3\Rightarrow q\) không chia hết cho 3 \(\Rightarrow q=3k+1\) hoặc \(q=3k+2\)
Với \(q=3k+1\Rightarrow2q+13=2\left(3k+1\right)=3\left(2k+5\right)⋮3\) là hợp sô (loại)
Với \(q=3k+2\Rightarrow q+10=3k+12=3\left(k+4\right)⋮3\) là hợp số (loại)
TH2: p lẻ và q chẵn \(\Rightarrow q=2\)
Khi đó \(2p+13\) và \(5p+2\) đều là số nguyên tố
- Với \(p=3\Rightarrow2p+13=19\) là SNT và \(5p+2=17\) là SNT (thỏa mãn)
- Với \(p>3\Rightarrow p\) ko chia hết cho 3 \(\Rightarrow p=3k+1\) hoặc \(p=3k+2\)
Với \(p=3k+1\Rightarrow2p+13=3\left(2p+5\right)⋮3\) là hợp số (loại)
Với \(p=3k+2\Rightarrow5p+2=3\left(5k+4\right)⋮3\) là hợp số (loại)
Vậy \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\) thỏa mãn yêu cầu
b.
x là số tự nhiên \(\Rightarrow x^2+4x+32>x+4\)
Do p là số nguyên tố mà \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+4x+32=p^a\\x+4=p^b\end{matrix}\right.\) với \(\left\{{}\begin{matrix}a>b\\a+b=n\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^2+4x+32}{x+4}=\dfrac{p^a}{p^b}\)
\(\Rightarrow x+\dfrac{32}{x+4}=p^{a-b}\)
Do \(p^{a-b}\) là số nguyên dương khi \(a>b\) và x là số nguyên
\(\Rightarrow\dfrac{32}{x+4}\) là số nguyên
\(\Rightarrow x+4=Ư\left(32\right)\)
Mà \(x+4\ge4\Rightarrow x+4=\left\{4;8;16;32\right\}\)
\(\Rightarrow x=\left\{0;4;12;28\right\}\)
Thay vào \(\left(x^2+4x+32\right)\left(x+4\right)=p^n\)
- Với \(x=0\Rightarrow128=p^n\Rightarrow2^7=p^n\Rightarrow p=2;n=7\)
- Với \(x=4\Rightarrow512=p^n\Rightarrow2^9=p^n\Rightarrow p=2;n=9\)
- Với \(x=12\Rightarrow3584=p^n\) (loại do 3584 không phải lũy thừa của 1 SNT)
- Với \(x=28\Rightarrow29696=p^n\) (loại do 29696 không phải lũy thừa của 1 SNT)
Vậy \(\left(x;p;n\right)=\left(0;2;7\right);\left(4;2;9\right)\)